Mentor Graphics
Introduction to VHDL

July 1994

MenlarR\
raphics-

G

Copyright 0 1991-1994 Mentor Graphics Corporation. All rights reserved.
Confidential. May be photocopied by licensed customers of
Mentor Graphics for internal business purposes only.

The software programs described in this document are confidential and proprietary products of Mentor
Graphics Corporation (Mentor Graphics) or its licensors. No part of this document may be photocopied,
reproduced or translated, or transferred, disclosed or otherwise provided to third parties, without the
prior written consent of Mentor Graphics.

The document is for informational and instructional purposes. Mentor Graphics reserves the right to
make changes in specifications and other information contained in this publication without prior notice,
and the reader should, in all cases, consult Mentor Graphics to determine whether any changes have
been made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
the written contracts between Mentor Graphics and its customers. No representation or other
affirmation of fact contained in this publication shall be deemed to be a warranty or give rise to any
liability of Mentor Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN
IT, EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Portions of this manual are based on IEEE Std 1076-1987, IEEE Standard VHDL Language Reference
Manual, copyright 01988 by the Institute of Electrical and Electronics Engineers, Inc. The IEEE does
not, in whole or in part, endorse the contents of this manual. For information on purchasing the IEEE
Standard, call 1-800-678-IEEE.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

A complete list of trademark names appears in a separate "Trademark Information" document.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070.
Copyright O Mentor Graphics Corporation 1993. All rights reserved.
An unpublished work of Mentor Graphics Corporation.

Table of Contents

TABLE OF CONTENTS

About This Manual Xi
Section 1
Overview 1-1
General VHDL Modeling Principles 1-3
Top-Down Design 1-4
Modularity 1-4
Abstraction 1-8
Information Hiding 1-9
Uniformity 1-11
Summary 1-11
Section 2
VHDL Fundamentals 2-1
VHDL Building Blocks 2-2
Magjor Language Constructs 2-3
Primary Language Abstraction 2-5
Design Description Methods 2-10
Structural Description 2-10
Behavioral Description 2-14
Structural and Behavioral Description Summary 2-28
Data-Flow Description 2-30
Constructs Found in Each Design Description Method 2-34
Section 3
Foundation for Declaring Objects--Types 31
Various Classes of Type Definitions 34
Scalar Types 34

Mentor Graphics Introduction to VHDL, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 3 Foundation for Declaring Objects--Types [continued)]

Physical Types

Floating Point Types

Enumeration Types

Integer Types

Composite Types
Array Types

Record Types

File Types

Access Types
Retrieving Information on Certain Kinds of Objects

Section 4

Constructs for Decomposing Design Functionality

Concurrent Decomposition

Block Statement

Component Instantiation
Sequential Decomposition

Subprograms--Functions and Procedures

Function Call

Procedure Call

Contrasting Concurrent and Sequential Modeling

How Vaues Get Assigned to Signals and Variables

Resolving a Signal VVaue When Driven by Multiple Assignment
Statements

Creating Shared Modul es--Packages
Making a Package Visible--Library Clause and Use Clause

3-6
3-7
3-8
3-9
39
3-12
3-13
3-13
3-14

4-3
4-4
4-7

4-12

4-13

4-24

4-27

4-28

4-36

4-43
4-43
4-48

iv Mentor Graphics Introduction to VHDL, July 1994

Table of Contents

TABLE OF CONTENTS [continued]

Section 5

Global Considerations 5-1
Scope and Visibility 51
Reusing Predefined Names --Overloading 5-6

Overloading Enumeration Literals 5-6

Overloading Subprograms 5-7

Overloading Operators 5-11
Section 6

Coding Techniques 6-1
General VHDL Coding Guidelines 6-1
Various Techniques for Modeling Timing 6-5

Embedding Fixed-Delay Parameters Within aModel 6-6
Embedding Variable-Delay Parameters Within a Model 6-6
Using Generics to Parameterize a Model 6-8
Parameterizing Rise/Fall Delays with Generics 6-12
Increasing Model Accuracy with Error Checking 6-17
Modeling for Increased Simulation Performance 6-23
When to Use Variables Within aLoop Instead of Signals 6-23
Using Resolution Functions Only When Needed 6-25
Using Attribute ' event Instead of ’ stable When Possible 6-25
Creating Lookup Tablesfor Logic Operations 6-27
Process Statements--Avoiding Infinite Loops 6-29
Using VHDL for Simulation Stimulus 6-32
Glossary Glossary-1
I ndex

Mentor Graphics Introduction to VHDL, July 1994

Table of Contents

LIST OF FIGURES

1-1. Various Things Y ou Can Describe with VHDL 1-2
1-2. Flat-Level Partitioning of a Hardware Design 1-5
1-3. A Hardware Module Created from VHDL BuildingBlocks ______ 1-6
1-4. Hierarchical Partioning of a VHDL Shifter Description 1-7
1-5. Applying Abstraction to a ROM Description 1-9
1-6. Hiding Unessential Details of NAND Gate Level 1-10
2-1. Port Clause Syntax Diagram 2-2
2-2. Magjor Language Construct Hierarchy 2-4
2-3. Entity Name Usage in Entity Declaration and Architecture

Body 2-7
2-4. Multiple Architecture Bodies for One Entity Declaration 2-9
2-5. Symbol Representation of Two-Input Multiplexer 2-11
2-6. A Schematic Editor Hierarchical Design of aMultiplexer ______ 2-11
2-7. Gate-Level Representation of Two-Input Multiplexer 2-12
2-8. Code of Structural Description for a Multiplexer 2-12
2-9. Two-Input Multiplexer with Associated Structural Description 2-14
2-10. Code of Behavioral Description for a Multiplexer 2-15
2-11. Code Example of Behavioral Description for a Shifter 2-19
2-12. Arrays Represented as Data-Storage Containers 2-20
2-13. Variable Assignment for SHFTOUT Array After 10ns ____ 2-21
2-14. Variable Assignment for Array When SHFTCTL = 00 2-23
2-15. Variable Assignment for Array When SHFTCTL = 01 2-23
2-16. Variable Assignment for Array When SHFTCTL =10 2-24
2-17. Variable Assignment for Array When SHFTCTL =11 2-25
2-18. Four-Bit Shifter Waveforms 2-27
2-19. Schematic for a Four-Bit Shifter 2-27
2-20. Comparing Structural and Behavioral Descriptions 2-29
2-21. Example of Data-Flow Description for a Multiplexer 2-31
2-22. Comparison of Behavioral and Data-Flow Shifter

Descriptions 2-33
3-1. Various Classes of Type Definitions Within a Type

Declaration 3-3
3-2. Defining aConstrained Array Type 3-10
3-3. Defining a Constrained Array Matrix 311
3-4. Defining an Unconstrained Array with Array Elements 311
3-5. Signal Attribute Example 3-15
4-1. Concurrent and Sequential Operations 4-2
4-2. Relating Blocksto the VHDL Hierarchy 4-5
4-3. Using the Guard Expression on a Bistable Latch 4-6

Mentor Graphics Introduction to VHDL, July 1994

Table of Contents

4-4,
4-5.
4-6.
4-7.
4-8.
4-9

4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.

4-20

LIST OF FIGURES [continued]

Instantiating an AND Gate in aMUX Description

Instantiating a Component Using Different Parameters

Using Procedures and Functions

Code Example of a Subprogram--RAM Load Procedure

Code Example of a Subprogram--RAM Read Procedure

Example of a Subprogram--Concatenate Data Procedure
Code Example of a Subprogram--Parity Checker Function
Associating Actual Parameters to Formal Parameters

Positional Parameter Notation in a Function Call

Procedure Call Parameter Association

Evauation Flow for First Behavioral AOlI Models

AND/OR/Inverter Circuit

Operation-Flow Diagram for AOI Circuit

Changing Model Behavior by Moving Sequential Statements

Shared Module of Code Defined as a Package

Portion of Code from a Package Called Standard

Effects on Entity and Architecture When Changing Package
Head

4-21. Making Packages Visible with Library and Use Clauses

4-22. Coupling Two Proceduresto One Package with Use Clauses _______

o-1.
5-2.
5-3.
o5-4.
5-5.
5-6.
o-7.
6-1.
6-2.
6-3.
6-4.
6-5.

Parameters

Example of Scope and Visibility
Hiding a Declaration Using a Homograph

Overloading Enumeration Literals

Overloading Subprograms--Functions

Calling a Specific Overloaded Subprogram--Function
Overloading Operators

Calling a Specific Overloaded Operator

Good Presentation Style for Shifter Description

Poor Presentation Style for Shifter Description
Embedding Variable-Delay Parameters Within Model

Test Bed Code for AND Gate Model

AND Gate Model Using Genericsto Receive Timing

6-6. Using Genericsto Pass Customized Parameters to a Model
6-7. Entity for One-Bit Latch Using Parameterized Rise/Fall

Delays
6-8. Rise/Fall Vaues Passed to One-Bit Latch Model
6-9. Test Bed Code for Latch Model

Mentor Graphics Introduction to VHDL, July 1994

4-10
4-11
4-16
4-17
4-20
4-22
4-23
4-25
4-26
4-28
4-32
4-34
4-35
4-38
4-44
4-45

4-47
4-49
4-51
5-3
5-5
5-7
5-9
5-10
5-12
5-13
6-4
6-5
6-7
6-8

6-10
6-11

6-13

6-14
6-15

Vil

Table of Contents

6-10.

Delays
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.

viii

LIST OF FIGURES [continued]

Architecture Body for One-Bit Latch with Parameterized

Error-Checking Code Added to Entity for One-Bit Latch

Comparing a Signal with Its Delayed Counterpart
Setup/Hold Timing for Latch

Signal Assignment Within aLoop

L ogic Example Package

Correcting an Infinite Loop in a Process Statement

Wait Statement in a Procedure Avoids an Infinite Loop
VHDL Model Used as Stimulus for AND Gate

6-16
6-18
6-20
6-22
6-24
6-28
6-30
6-31
6-33

Mentor Graphics Introduction to VHDL, July 1994

Table of Contents

LIST OF TABLES

4-1. AND/OR/INVERT Truth Table

4-2. AND/OR/Invert Karnaugh Map

5-1. Operators by Precedence

6-1. Constant Values Set in Latch Test Bed Model

Mentor Graphics Introduction to VHDL, July 1994

4-29
4-30
5-11
6-17

Table of Contents

Mentor Graphics Introduction to VHDL, July 1994

About This Manual

About This Manual

This manual introduces some of the language concepts and provides some
general coding techniques for the modeling language based on |EEE Std
1076-1987, IEEE Standard VHDL Language Reference Manual.

Manual Organization

This manual is organized into the following sections:

Section 1, "Overview," provides an introduction to VHDL and a description
of the modeling principles supported by the language.

Section 2, "VHDL Fundamentals,” introduces basic VHDL concepts and
defines many of the terms associated with the language.

Section 3, "Foundation for Declaring Objects--Types," defines objects, types,
and the different type classes provided by VHDL.

Section 4, "Constructs for Decomposing Design Functionality,” identifies a
number of VHDL constructs that allow the designer to decompose a complex
design into smaller and more manageable modules.

Section 5, "Global Considerations," describes some of the general issues you
must consider when designing and modeling with VHDL.

Section 6, "Coding Techniques," provides a number of hardware problems
and some possible corresponding VHDL solutions.

"Glossary," defines terms that appear in this manual and the Mentor Graphics
VHDL Reference Manual.

Notational Conventions

For information about VHDL syntax conventions used in this manual, refer to the
Mentor Graphics VHDL Reference Manual. Also refer to the "BNF Syntax
Description Method" section in the Mentor Graphics VHDL Reference Manual.

Mentor Graphics Introduction to VHDL, July 1994 Xi

About This Manual

For information about general documentation conventions, refer to Mentor
Graphics Documentation Conventions.

Related Publications

In an effort to consolidate this information, the related publications list for VHDL
can be found in the Related Publications section of the Mentor Graphics VHDL
Reference Manual.

Xii Mentor Graphics Introduction to VHDL, July 1994

Overview

Section 1
Overview

This section provides an overview of VHDL, which is based on |IEEE Std
1076-1987, IEEE Sandard VHDL Language Reference Manual. VHDL stands
for VHSIC (Very High Speed Integrated Circuit) Hardware Description
Language. The following list outlines the major topics covered in this section:

General VHDL Modeling Principles 1-3
Top-Down Design 1-4
Modularity 1-4
Abstraction 1-8
Information Hiding 1-9
Uniformity 1-11

Summary 1-11

VHDL isadesign and modeling language specifically designed to describe (in
machine- and human-readable form) the organization and function of digital
hardware systems, circuit boards, and components.

Figure 1-1 shows some of the various things that you can model with VHDL.
This manual refersto a VHDL model as atextual description of a hardware
design or piece of adesign that, when ssmulated, mimics the design’s behavior.
A VHDL model can describe the behavior of either anew design or of
pre-existing hardware. Theterms VHDL description and VHDL model are used
interchangeably. A design refersto the product under development whether it be
a system, circuit board, or component.

Also refer to the discussion on "Designing or Modeling?' in the Digital Modeling
Guide.

Mentor Graphics Introduction to VHDL, July 1994 1-1

Overview

Various levels
of a design
hierarchy

Off the shelf
components and
boards

Product Proposal or
Product Specification

PRODUCT HARDWARE
DESIGN 5 MODELING

Figure 1-1. Various Things You Can Describe with VHDL

1-2 Mentor Graphics Introduction to VHDL, July 1994

Overview

Designing refers to the process of developing new ideas into a product.
Modeling usually refersto the process of creating a ssmulateable description
(model) of the behavior of pre-existing products. (In Figure 1-1, this processis
represented by the term Hardware Modeling.) Designing with VHDL involves
creating and using models that you can simulate.

When you use VHDL as adesign tool, you can describe a product idea, a product
proposal (possibly the next step after the idea), a product specification, and then
various design abstraction levels.

The compiled VHDL code provides a software model of your design or
pre-existing hardware that you can test using digital simulators. In the hardware
design process, you can analyze and refine your VHDL design description on a
workstation before reaching the prototype stage.

VHDL descriptions that are created following VHDL synthesis guidelines can be
run through a synthesis tool to create a gate-level implementation of the design.

General VHDL Modeling Principles

Because VHDL is apowerful language, you can write hardware descriptions that
satisfy two important goals:

e TheVHDL descriptions will be easy to understand.
e TheVHDL descriptions will be modifiable.

Easy-to-understand code benefits anyone who must read the code, especialy if
the original designer is not availableto clarify any ambiguity.

Modifiable code is equally beneficial. There are several reasons why you might
need to change your VHDL hardware description. For example, the hardware
requirements may have changed as the design developed, or you may have found
an error or timing problem during simulation of the software model.

In either case, VHDL supports the following principles that make it possible to
write, modify, and maintain complex hardware design descriptions:

e Top-down design e Abstraction e Uniformity

e Modularity ¢ Information-hiding

Mentor Graphics Introduction to VHDL, July 1994 1-3

Overview

The following subsections further describe these modeling principles and show

how they help make complex hardware descriptions readable, easy to understand,
and modifiable.

Top-Down Design

When designing a complex hardware system or ASIC (application-specific
integrated circuit), an engineer usually conceptualizes the design function with
block diagrams at a high abstraction level. VHDL, within a Mentor Graphics
simulation environment, allows you to

e Model the behavior of the high-level blocks

o Analyze (smulate) them

o Refine the high-level functionality as required before reaching the lower
abstraction levels of design implementation

With the addition of the Mentor Graphics synthesis application, a\VVHDL design
can be synthesized to the gate level.

Correcting design errors earlier in the design process is less costly than at the
silicon or component implementation level.

Modularity

Modularity is the principle of partitioning (or decomposing) a hardware design
and associated VHDL description into smaller units. Figure 1-2 shows aflat
design (no hierarchy) partitioned into smaller units. When you design hardware
with VHDL, the function of each hardware partition can be described with a
module of code (represented as three-dimensional rectangular boxesin Figure
1-2). This makes the hardware description easier to manage and understand.

1-4 Mentor Graphics Introduction to VHDL, July 1994

Overview

VHDL
Modules

Figure 1-2. Flat-Level Partitioning of a Hardware Design

VHDL is composed of language building blocks that consist of over 75 reserved
words and about 200 descriptive words or word combinations. Figure 1-3
illustrates how each VHDL module consists of various language building blocks.
Figure 1-3 shows a modul e that represents a description of aNAND gate.

Mentor Graphics Introduction to VHDL, July 1994 1-5

Overview

Various VHDL
o Building Blocks
Description of

NAND Gate

Figure 1-3. A Hardware Module Created from VHDL Building Blocks

Figure 1-4 shows a hierarchical method of partitioning a design into smaller
modules. The VHDL description of a shifter is partitioned into modules that
describe the underlying structure. The shifter description contains an indirect
reference to the NAND gate module. The structure of the shifter is described in a
higher-level module as a series of interconnected flip-flops. In alower-level
module, the structure of the flip-flop is described as two interconnected NAND
gates. In aseparate module at an even deeper level, the function of a NAND gate
isdescribed. Each module is a self-contained description of the various parts
used to describe a shifter.

The self-contained modules need to interface to other modulesin adesignin
order to work as one unit. At the highest level, the shifter module in Figure 1-4
contains awell-defined interface that couplesit to the flip-flop module. The
flip-flop description at the middle level contains an interface that couplesit to the
lower-level description of the NAND gate.

1-6 Mentor Graphics Introduction to VHDL, July 1994

Overview

Description of

Description of

A

Description of
NAND Gate

A -

Coupling

Figure 1-4. Hierarchical Partioning of a VHDL Shifter Description

One reason to keep the description of the NAND gate and the flip-flop localized
in separate modules is to make it possible to couple more than one high-level
description to the lower-level modules. Localization makes the lower-level
modul es reusable and eliminates repetition. Another reason to localize the
flip-flop and NAND gate modules is that the high-level description of the shifter
is kept relatively simple and uncluttered.

Mentor Graphics Introduction to VHDL, July 1994

1-7

Overview

It would not be a difficult task to modify the shifter description (such as adding
more inputs and outputs) without changing the flip-flop or NAND gate
descriptions. By using modularity in your VHDL descriptions, you meet the
goals of keeping your description easy to understand and modifiable.

Abstraction

An abstraction will group details (in a module) that describe the function of a
design unit but does not describe how the design unit isimplemented. This
principleis closely related to modularity. In Figure 1-4, theflip-flopisan
abstraction of the NAND gate level, and the shifter is an abstraction of the
flip-flop level. Each abstraction is built from lower levels.

Figure 1-5 shows another way you can describe a hardware design using various
levels of abstraction. A Read-Only-Memory (ROM) device is described at a high
level as a series of address |ocations with corresponding data bytes stored in each
location. At thislevel you do not care about address lines, datalines, or control
lines. Y ou can concentrate on the data byte assignments to selected addresses
without thinking about the many signal lines that must be controlled at alower
level.

In the lower-level module, you can describe how each signal on the ROM pins
must be configured to read or program each data storage location. If you needed
to change the data stored in a given ROM location, you could go to the
higher-level module and change a hex value associated with an address rather
than redefine the states of many datalines. Y ou again meet the modeling goals
of keeping the design easy to understand and maintainable by using abstraction.

1-8 Mentor Graphics Introduction to VHDL, July 1994

Overview

Higher Abstraction

Lower Abstraction

Figure 1-5. Applying Abstraction to a ROM Description
Information Hiding

When coding a particular hardware module, it may be desirable to hide the

Levels

Levels

Description of Addressable

Bytes of Storage

Description of Address, Data,
and Control Signals

implementation details from other modules. Information hiding is another useful

principle for making VHDL designs manageable and easier to read. This
principle complements abstraction, which extracts the functional detailsin a
given module. By hiding implementation details from other modules, a

designer’s attention is focused on the relevant information while the irrelevant
details are made inaccessible.

In the preceding VHDL shifter description (shown in Figure 1-4), the NAND

gate level of abstraction can be hidden from the person who is coding the
flip-flop description. Figure 1-6 shows a representation of this principle.

Mentor Graphics Introduction to VHDL, July 1994

Overview

Description of Flip Flop Hidden Description

of NAND Gate

Figure 1-6. Hiding Unessential Details of NAND Gate Level

The person describing the flip-flop does not really care (at this level) how the
NAND gate internalswork. The NAND gate can be a previously-coded
description that was compiled and stored in alibrary. The designer needs only to
know how to interface to the input and output pins of the NAND gate. Inthis
way, the flip-flop designer can ignore the details of how the NAND gateis
implemented.

Another function of information hiding isto protect proprietary information when
distributing VHDL models outside a company. By distributing only the compiled
code (executable), the proprietary information (source code) can be hidden from
its users.

1-10 Mentor Graphics Introduction to VHDL, July 1994

Overview

Uniformity

In addition to the principles of modularity, abstraction, and information-hiding,
uniformity is another principle that helps to make your hardware description
readable. Uniformity means that you create each module of code in asimilar way
by using the various VHDL building blocks. Uniformity implies good coding
style, such as consistent code indentation and informative comments. For further
information, refer to the "Genera VHDL Coding Guidelines' subsection on page
6-1.

Summary

e VHDL isamodeling and design language specifically designed to describe (in
machine- and human-readable form) the organization and function of digital
hardware systems, circuit boards, and components.

e Thefollowing list describes several reasons why you would use VHDL to
design and model your new product ideas or pre-existing hardware:

0 VHDL alowsyou to design, model, and test a system from the high level
of abstraction down to the structural gate level.

0 VHDL descriptions created following by VHDL synthesis guidelines can
be run through a synthesis tool to create gate-level implementations of
designs.

0 Because this hardware language is based on |EEE Std 1076-1987, IEEE
Sandard VHDL Language Reference Manual, engineers throughout the
design industry can use this language to minimize communication errors
and incompatibility problems.

O At Mentor Graphics, VHDL isintegrated into one overall design
environment. It ispossibleto do asystem-level simulation mixing
high-level, abstract descriptions with detailed gate-level models.

o VHDL supports the following principles that make it possible for you to write,
modify, and maintain complex hardware design descriptions:

O Top-down design--the method of describing (modeling) the behavior of the
high-level blocks, analyzing (ssmulating) them, and refining the high-level

Mentor Graphics Introduction to VHDL, July 1994 1-11

Overview

1-12

functionality as required before reaching the lower abstraction levels of
design implementation

Modul arity--the principle of partitioning (or decomposing) a hardware
design and the associated VHDL description into smaller units

Abstraction--grouping details (in amodule) that describe the function of a
design unit but do not describe how the design unit isimplemented

I nformation-hiding--hiding the implementation details of one module from
other modules

Uniformity--creating the design modules from the language building
blocks in a consistent way

Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

Section 2
VHDL Fundamentals

This section introduces fundamental VHDL concepts and defines many of the
terms associated with the language. Simple hardware examples are used
throughout the section to illustrate many of the concepts. It isimportant to note
that these examples may not represent ideal design or model solutions. In
addition, they are not meant to provide you with a full understanding of each
language building block but to give you a good introduction to the VHDL form.

Section 6 covers specific design tasks in further detail. The following list
outlines the major topics covered in this section:

VHDL Building Blocks 2-2
Major Language Constructs 2-3
Primary Language Abstraction 2-5
Design Description Methods 2-10
Structural Description 2-10
Behavioral Description 2-14
Data-Flow Description 2-30
Constructs Found in Each Design Description Method 2-34

Mentor Graphics Introduction to VHDL, July 1994 2-1

VHDL Fundamentals

VHDL Building Blocks

VHDL is composed of language building blocks that consist of more than 75
reserved words and about 200 descriptive words or word combinations. These
building blocks are used to create the data types and instructions that make up a
VHDL description.

Reserved words are words that have specific meaning to aVVHDL compiler, such
astheword port. Certain characters, such as the left and right parentheses and
the semicolon, are also classified as reserved words. Do not use reserved words
except as defined by VHDL.

Examples of descriptive word combinations are "port clause" and "port list".
Although these word combinations would not appear in actual code, they provide
aname to the building blocks that you use when building aVVHDL description.

The building blocks of VHDL are called language constructs. A language
construct is an item that is constructed from basic items such as reserved words
or other language building blocks. For example, the syntax diagramin

Figure 2-1 shows that the language construct called port_clause is composed of
the following: the reserved word port followed by the reserved word " (", another
building block called aport_list, the reserved word ")", and finally the reserved
word ";". Those items enclosed in an oval or circle appear verbatim in the
VHDL code. Items enclosed in rectangles are other language constructs that are

defined in separate syntax diagrams.

port_clause 0 port_list »@ »@ >

Figure 2-1. Port Clause Syntax Diagram

For a complete listing of VHDL reserved words and syntax diagrams for each
language construct, refer to the Mentor Graphics VHDL Reference Manual.

This manual presents syntax information in a summary format that suggests how
the real code looks. The right column of the following syntax example shows the
syntax summary for port clause:

port Clausecccceeveeeieeeneens port (port_list) ;

2-2 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

Examples presented in this format do not always show which itemsin the syntax
are optional or which ones you can use more than once. For the detailed
information, you should consult the syntax diagrams and the BNF diagramsin
the Mentor Graphics VHDL Reference Manual.

Major Language Constructs

Figure 2-2 shows the hierarchy of the major language constructs. Each block in
the figure represents a major language construct and shows its position relative to
other constructs. The following paragraphs briefly introduce some of the
constructs that are further explained in later subsections. Y ou might want to refer
to Figure 2-2 when reading about the various language constructs in the | ater
subsections.

At the top of the pyramid-like structure in Figure 2-2 isthe design entity. A
design entity is the basic unit of a hardware description.

At the next level, the figure shows that a design entity is composed of one or
more architectures. The architecture describes the relationships between the
design entity inputs and outputs. Each architecture consists of concurrent
statements, denoted as CSin Figure 2-2. Concurrent statements define
interconnected processes and blocks that together describe a design’s overall
behavior or structure.

Y ou can group concurrent statements using the block statement. This grouping is
represented by a dashed block in Figure 2-2. Groups of blocks can aso be
partitioned into other blocks. At thissamelevel, aVHDL component (denoted as
CPin Figure 2-2) can beinstantiated and connected to defined signals within the
blocks. The VHDL component is areference to an entity.

Mentor Graphics Introduction to VHDL, July 1994 2-3

VHDL Fundamentals

CS = Concurrent Statement
CP = Component
SS = Sequential Statement

Figure 2-2. Major Language Construct Hierarchy

2-4 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

A process can be a single signal assignment statement or a series of sequential
statements (denoted as SSin Figure 2-2). Within a process, block, or package,
procedures and functions can partition the sequential statements. Refer to the
"Locating Language Constructs' appendix in the Mentor Graphics VHDL
Reference Manual for information on where magjor constructs can be positioned
within aVHDL design description.

A package (not shown in the figure) allows you to group a collection of related
items for use by one or more separate modules of code.

Primary Language Abstraction

During the design process you usually decompose hardware designs into smaller,
more manageable units. VHDL supports this hardware decomposition and makes
it possible for you to write a hardware description so that many of the smaller
parts are reusable by different portions of the overall design (or even other
designs).

The primary abstraction level of aVHDL
hardware model is the design entity. The design
Entity Declaration entity can represent acell, chip, board, or
subsystem.

rchitecture Body | A design entity is composed of two main parts: an
entity declaration and an architecture body*.

Entity declarations and architecture bodies are two of the VHDL language library
units. A library unit isaportion of the hardware description (model) that can be
contained and compiled in a separate design file. (Package declarations and
package bodies are two other library units.) This capability allows you to
modularize a design description by compiling each entity or package declaration
separate from the corresponding body.

*Refer to the appropriate syntax diagramsin the Mentor Graphics VHDL
Reference Manual for alisting of all the possible building blocks in an entity
declaration and an architecture body.

Mentor Graphics Introduction to VHDL, July 1994 2-5

VHDL Fundamentals

—DesignEntity - An entity declaration defines the interface between
the design entity and the environment outside of
the design entity. The structure of an entity
declaration is shown in the following example:

Entity Declaration

entity identifier is
entity _header
-- (generic and/or port clauses)
entity_declarative part
-- (declarations for subprograms,
-- types, signdls, ...)
begin
entity statement_part
end identifier ;

The entity identifier is a descriptive name that you assign. Each design entity
receives information from the outside via a port (of modein) or ageneric
interface. The design entity sends out information via a port (of mode out). Also
see the top of Figure 2-2 on page 2-4.

A generic interface defines parameters (such as delay data) that can be passed
into the entity when it isinstantiated*. Generics allows you to define areusable
design entity with variable parameters that can be customized for each use of the
design entity.

The basic format of a generic clause and a port clause are shown as follows:
generic clause generic (generic_list) ;
port clauseccccoeeereenee. port (port_list) ;

The following example shows an entity declaration (including a port clause) for
the ssmple two-input AND gate shown at the left. The convention used in this
manual to identify reserved words within code examplesisto display themin all
uppercase characters. Also refer to the Notational Conventions section in the
Mentor Graphics VHDL Reference Manual.

*Passing parametersin thisway is further explained in the "Component
Instantiation” subsection on page 4-7.

2-6 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

a ENTI TY and2 1S

b F PORT (a, b: INDbit;

B : QUT bit);
END and2;

The architecture body describes the relationships

between the design entity inputs and outputs. The
- Entity Declaration structure of this construct is shown in the
following example:

architectureidentifier of entity_nameis
architecture_declarative _part

begin

architecture_statement_part

end identifier;

The identifier and entity _name are words that you provide in your VHDL code.
The entity name in the architecture body must be the same as the identifier of the
corresponding entity declaration as shown in Figure 2-3.

ENTITY and2 1S Same entity name
PORT (a, b: INDbit; in both places.
g: QUT bit);
END and2;

ARCHI TECTURE exanple OF and2 IS
--decl arati ons here
BEG N
--statenents here
END exanpl e;

Figure 2-3. Entity Name Usage in Entity Declaration and
Architecture Body

Mentor Graphics Introduction to VHDL, July 1994 2-7

VHDL Fundamentals

Y ou define the behavior or structure of a design entity in the architecture body
using one or more methods described in the "Design Description Methods'
subsection, beginning on page 2-10.

A given design entity may have more than one architecture body to describe its
behavior and/or structure as shown in Figure 2-4.

Y ou would write the entity declaration (entity name could be "trfc_Ic" as
indicated at the top of Figure 2-4) and compileit. Then you could write and
compile a high-abstraction level behavioral description of the circuit. The
architecture name could be "behav" as shown in the lower-right corner of
Architecture Body 1 in Figure 2-4.

Once you are satisfied that the circuit behavior (at the high-abstraction level) is
functioning, you can write another architecture body to test circuit functions at a
lower-abstraction level. Architecture Body 2 in Figure 2-4 includes some
structure and data flow details. The architecture name of this body is"dflow."

Then you can simulate this second level architecture and make refinements to
Architecture Body 2 as required until the expected results are achieved.

The lowest abstraction level you write could be a structural description of the
circuit that implements the design function at the component level. Architecture
Body 3 in Figure 2-4 represents this abstraction level. The architecture name of
thisbody is"struct."

Using three different architecture bodies for this one design allows you to

develop the circuit description using top-down methodology. Each abstraction
level is documented and saved in a separate design file.

2-8 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

< Entity
<" Declaration

Architecture
Body 1

(Behavior only.
No structure.)

Architecture
Body 2

(Behavior mixed
with some structure.)

Architecture
Body 3

(Structure only.)

Figure 2-4. Multiple Architecture Bodies for One Entity Declaration

Mentor Graphics Introduction to VHDL, July 1994 2-9

VHDL Fundamentals

Design Description Methods

VHDL provides atextual method of describing a hardware design in place of a
schematic representation. The following list shows the various VHDL methods
for describing hardware architectures:

o Structural description method expresses the design as an arrangement of
interconnected components.

o Behavioral description method describes the functional behavior of a
hardware design in terms of circuits and signal responses to various stimuli.
The hardware behavior is described algorithmically without showing how it is
structurally implemented.

o Data-flow description method is similar to aregister-transfer language. This
method describes the function of a design by defining the flow of information
from one input or register to another register or outpuit.

All three methods of describing the hardware architecture can be intermixed in a
single design description.

Structural Description

This subsection uses a two-input multiplexer to identify some of the language
constructsin aVHDL structural description. This description provides an
overview and not a complete representation of all the language building blocks
found in a structural description. Refer to the appropriate syntax diagramsin the
Mentor Graphics VHDL Reference Manual for acomplete flow of the language
constructs described in this subsection.

A VHDL structural description of a hardware design is similar to a schematic
representation because the interconnectivity of the componentsis shown. This
similarity isillustrated in this subsection with a comparison of a simple schematic
designto aVHDL structural description of the same circuit.

Figure 2-5 shows the symbol of atwo-input multiplexer (MUX). ThisMUX isa
hierarchical design, as shown in Figure 2-6, with the bottom sheet containing the
schematic representation or description of the internal structure, as shown in
Figure 2-7. Note the pin names on the inside of the MUX symbol in Figure 2-5
match the net names of the inputs and output of the schematic in Figure 2-7.

2-10 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

DL IN. ~———dl g1 ~Qaaur

SEL I N~ sel

Figure 2-5. Symbol Representation of Two-Input Multiplexer

Top Sheet

MUX Symbol

Bottom Sheet

MUX Schematic

Figure 2-6. A Schematic Editor Hierarchical Design of a Multiplexer

Figure 2-8 shows a VHDL structural description of the two-input multiplexer.
The VHDL code contains comments that are set off with a double dash (- -).
Any text appearing between the double dash and the end of alineisignored by
the compiler. (Seelines1,2,5, 7, 17, 19 through 21, and 24 in Figure 2-8.)
Descriptive comments make the code easier to read.

Mentor Graphics Introduction to VHDL, July 1994 2-11

VHDL Fundamentals

dol ~ aa
u3d 5
sel |~ 0o | .
nsel — 0 -~
5 ab
0 uz
dil ~ 0

OCOO~NOUIR,WNE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

2-12

Figure 2-7. Gate-Level Representation of Two-Input Multiplexer

ENTITY nmux IS -- entity declaration

PORT (dO, di, sel: INDbit; g: OUT bit); --port clause

END nux;

-- architecture body

ARCHI TECTURE struct OF nux IS

COMPONENT and?2 --architecture decl. part
PORT(a, b: INDbit; c: QUT bit);

END COVPONENT;

COVPONENT or 2
PORT(a, b: INDbit; c: QUT bit);

END COVPONENT;

COVPONENT i nv
PORT (a: INbit; c: QUT bit);

END COVPONENT;

SI GNAL aa, ab, nsel: bit; --signal declaration
FOR ul cinv USE ENTITY WORK. i nvrt(behav); -- config.
FOR u2, u3:and2 USE ENTITY WORK. and_gt (dflw); -- specif.
FOR u4 :or2 USE ENTITY WORK. or _gt(archl); --

BEG N

ul:inv PORT MAP(sel, nsel);--architecture statenent part
u2: and2 PORT MAP(nsel, dl, ab);

u3: and2 PORT MAP(dO, sel, aa);

ud:or2 PORT MAP(aa, ab, Q);

END struct;

Figure 2-8. Code of Structural Description for a Multiplexer

Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

The two-input MUX represented by Figure 2-8 is abasic design unit. The entity
declaration at the top of Figure 2-8 (lines 1 through 3) defines the interface
between the design entity and the environment outside of the design entity.

This entity declaration contains a port clause that provides input channels
(signalsdo, d1, and sel in Figure 2-8, line 2) and an output channel (signal q in
Figure 2-8, line 2). The signals are of a predefined type called bi t whichis
declared elsewhere to describe all possible values (0 or 1) for each signal.
(Types are described on page 3-1.) This entity declaration can be compared with
the MUX symbol in the schematic design in Figure 2-6.

The architecture body in Figure 2-8 (lines 6 through 28) describes the
relationships between the design entity inputs and outputs structurally. This
architecture body performs afunction similar to the bottom sheet in the
schematic design in Figure 2-6.

The various components (and2, or 2, and i nv) that form the nux design entity in
Figure 2-8 are declared in the architecture declarative part (lines 7 through 15).
Signals (aa, ab, and nsel) are also declared in the architecture body (line 17) to
represent the output of the two AND gates (u2 and u3) and the inverter (u1).

The configuration specificationsin lines 19 through 21 bind each component
instance to a specific design entity which describes how each component
operates. For example, the component ul used in line 24 of Figure 2-8 is bound
to an architecture body called behav for adesign entity calledi nvrt.

The architecture statement part (lines 24 through 27) describes the connections
between the components within the design entity. In this part, the declared
components are instantiated. (For more information on component declaration
and instantiation, see "Component Instantiation" on page 4-7.)

Figure 2-9 shows how a schematic sheet could contain aMUX symbol with an
associated VHDL structural description. Instead of using an underlying
schematic sheet, the VHDL structural description defines the internal structure of
the component.

In the design shown in Figures 2-6 through 2-9, the behavior of the MUX was

determined by the connections between the inverter, the AND gates, and the OR
gate. The function of these gatesis generally understood.

Mentor Graphics Introduction to VHDL, July 1994 2-13

VHDL Fundamentals

In amore complex design, the components ul through u4 in Figure 2-8 could
represent entities that have complicated functions such as a central processing
unit or a bus controller. When function and not structure is most important, you
can describe each component with a corresponding behavioral description.

Schematic Sheet

| >
MUX Symbol

System-1076
Description

Figure 2-9. Two-Input Multiplexer with Associated Structural
Description

Behavioral Description

A VHDL behaviora description represents the function of adesign in terms of
circuit and signal response to various stimulus. This subsection identifies some
of the major language constructs found in a behavioral description using the
previous MUX example and afour-bit shifter example. Refer to the appropriate
syntax diagrams in the Mentor Graphics VHDL Reference Manual for a
complete flow of the language constructs described in this subsection. After
reading the previous subsection on structural descriptions, you can compare that
method with the behavioral description method that is described in this
subsection.

2-14 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

Figure 2-10 shows a behavioral description of the mux example described in the
structural description subsection. Like the structure description, you can include
the MUX symbol on a schematic sheet, except this time, the VHDL model
defines the behavior, of the component during circuit simulation.

The behavioral description in Figure 2-10 and the structural description in Figure
2-8 both contain an entity declaration and an architecture body. In practice, you
most likely would not have both the behavioral and structural architecture body
shown in Figures 2-8 and 2-10 in one source file (although it is possible). You
can first write the entity declaration in one design file, then the behavioral
architecture in another design file, and the structural architecture in still another
design file.

In an actual design, after the entity declaration is written and compiled, you
might next write a behavioral architecture to allow testing of the overall circuit
functions. After you simulate and refine the functional model, you then might
write a structural architecture. Y ou can substitute the structural architecture body
for the behavioral and then the model can be simulated again.

1 ENTITY nmux IS -- entity declaration

2 PORT (dO, di, sel: INDbit; g: QOUT bit); --port clause
3 END nux;

4 -- architecture body

5 ARCHI TECTURE behav OF nmux IS

6 BEG N

7 fl: -- process statenent

8 PROCESS (dO, di, sel) -- sensitivity list

9 BEGA N

10 IF sel =0 THEN -- process statenment part
11 g <= di;

12 ELSE

13 g <= do;

14 END I F;

15 END PROCESS f1;

16 END behav;

Figure 2-10. Code of Behavioral Description for a Multiplexer
A behavioral description model is also useful to stimulate inputs of other VHDL

models during simulation. For example, you might have designed a traffic light
controller using a structural description and now you wish to test it. The traffic

Mentor Graphics Introduction to VHDL, July 1994 2-15

VHDL Fundamentals

light controller has inputs that connect to traffic sensors. For simulation
purposes, you could include a behavioral model that stimulates the sensor inputs
in a predefined test pattern.

The major difference between the structural and behavioral descriptions of the
MUX isthat the architecture body in Figure 2-10 contains a process statement.
The process statement describes a single, independent process that defines the
behavior of ahardware design or design portion. The basic format of a process
statement is shown as follows:

process statement label :
process (sensitivity _list)
process_declarative part
begin
process_statement_part
end process label ;

The process statement in Figure 2-10 begins with the process label f 1 followed
by acolon (line 7). The process label isoptional but is useful to help
differentiate this process from other processesin alarger design.

Following the reserved word processis an optional sensitivity list (located
between the parentheses). The sensitivity list in Figure 2-10 (line 8) consists of
the signal namesdo, di1, andsel . During simulation, whenever asignal in the
sensitivity list changes state, the statementsin that process are executed. Inthe
MUX example, whenever do, di, or sel changes state, processf 1 is executed
and the state of the output signal is changed accordingly. Each processin a
VHDL design description is executed once during initialization of the VHDL
model.

The heart of the process statement in Figure 2-10 isthe’if’ statement that is

contained in the process statement part. The basic format of an if statement is
shown asfollows:

2-16 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

if statementcccoe.eee. if condition then
sequence of _statements
elsif condition then
sequence of _statements
else
sequence of statements
end if ;

The VHDL if statement isinterpreted ssimilarly to an English sentence. For
example, look at the following sentence:

I the traffic light is green, then proceed across the intersection or else (if
the traffic light is not green) remain stopped.

The sentence has a condition that must be satisfied (If the traffic light is green)
before the command (proceed across the intersection) is executed. The "else"
part of the sentence gives the alternative command (or else remain stopped) if the
condition is not satisfied.

Theif statement in Figure 2-10 (lines 10 through 14) can be rewritten as the
following sentence:

If signal sel (select) isequal to 0, then assign the value of the waveform
on signal d1 to target signal q or else assign the value of the waveform on
signal do to target signal g.

Oncetheif condition or the else condition in this example is satisfied

(sel = '0 oritsopposite wheresel doesnotequa ' 0’), target signa q is
modified according to the appropriate signal assignment statement. The basic
format of asignal assignment statement is as follows:

signal assignment statement: target <= transport waveform;
(Note that transport is optional.)

Thefollowing isthefirst signal assignment statement in Figure 2-10:
11 g <= di;

Mentor Graphics Introduction to VHDL, July 1994 2-17

VHDL Fundamentals

This statement assigns the waveform on signal d1 to target signal g. The
optional reserved word transport* isnot used in thisexample. The signal
assignment delimiter consists of the two adjacent special characters <=, also
called acompound delimiter. The following is the second signal assignment
statement in this example. This statement assigns the waveform of signal do to
the target signal q:

13 g <= do;

Another use of the compound delimiter <= is asthe relational operator "less than
or equal to" in conditions such as the following:
|IF z <=1 THEN

The other relational operators are shown in Table 5-1 on page 5-11.

In summary, the signal assignment delimiter <= is used to assign the value on the
right side of the delimiter to the target on the left side. The same compound
delimiter <= isused as the relational operator "less than or equal to" in test
conditions such astheif statement. How this delimiter is used in context
determines whether it isa signal assignment delimiter or arelational operator.

Figure 2-11 shows a VHDL behavioral description of afour-bit shifter. To see
how accurate and succinct the VHDL description is, compare it with the
following textual description:

The four-bit shifter has four input data |ines, four output

data lines, and two control lines. Wen both control |ines
are low, the input levels are passed directly to the
correspondi ng output. When control line O is high and
control Iine 1 is low, output line Ois low input line O

is passed to output line 1; input line 1 is passed to
output line 2; and input line 2 is passed to output line 3.
When control line O is low and control line 1 is high,
input line 1 is passed to output line O; input line 2 is
passed to output line 1; input line 3 is passed to output
line 2; and output line 3 is low. Wen both control Iines
are high, input line O is passed to both output line 0 and
line 1; input Iine 1 is passed to output line 2; and input
line 2 is passed to output line 3.

*Refer to the Glossary entry for the reserved word transport for further
information.

2-18 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

OCOO~NOUIDWN B

NNRPRRRRRRRR R
RPOOWONOUIAWNRO

ENTITY shifter IS -- entity declaration
PORT (shftin : IN bit_vector(0 TO 3); --port clause
shftout : OUT bit_vector(0 TO 3);
shftctl : IN bit_vector(0 TO 1));
END shifter;
ARCHI TECTURE behav OF shifter IS -- architecture body
BEG N
f2: -- process statenent

PROCESS (shftin, shftctl)
VARI ABLE shifted : bit_vector(0 TO 3);--proc. decl. part
BEA N
CASE shftctl IS --proc. stmmt part
VWHEN " 00" => shifted := shftin;
VWHEN "01" => shifted := shftin(l1 TO3) & '0’;
VWHEN "10" => shifted :="'0 & shftin(0 TO 2);
VWHEN "11" => shifted := shftin(0) & shftin(0 TO 2);
END CASE;
shftout <= shifted AFTER 10 ns;
END PROCESS f 2;
END behav;

Figure 2-11. Code Example of Behavioral Description for a Shifter

The port clause in Figure 2-11 (lines 2 through 4) identifies the input ports as
shf ti n (shifter datain) and shft ct| (shifter control) and the output port as

shf t out (shifter dataout). This port clause defines the input and output ports as
an array of bitsusing the predefined typebi t _vect or. Types are described on

page 3-1.

The arrays can be compared with containers that have labeled compartments for
data storage as shown in Figure 2-12. For example, the array named shf t i n has
four elementsreferred to asshftin(0), shftin(1),shftin(2),and
shftin(3). Each element isastorage areafor data; in this case, they are storage
areasfor bit information.

Mentor Graphics Introduction to VHDL, July 1994 2-19

VHDL Fundamentals

shftin O 1 2 3 shftout O 1 2 3 shftctl O 1

Figure 2-12. Arrays Represented as Data-Storage Containers

The architecture body in Figure 2-11 contains a process statement (lines 9
through 20) as does the previous MUX behavioral example. One difference
between the two examplesis that the process statement in the shifter example
contains a process declarative part (line 11) composed of a variable declaration.
A variable declaration has the following format:

variable declaration variableidentifier_list :
subtype_indication := expression ;

The variable declaration in Figure 2-11 does not include the optional

":= expression” part. Thevariableshi ft ed holds the shifted value of the
shftin bit vector. Itisimportant that shftin andshi fted are of the same
type, in this case, an array of bits with four elements.

The variable declaration states that shi f t ed isan array of bitsfrom 0 to 3.
The bit vector shi f t ed appears later (after the case statement) in the signal
assignment:

19 shftout <= shifted AFTER 10 ns;

This signal assignment statement includes the reserved word after to specify the
propagation time expected for the shf t i n array of waveforms (stored in the
variable array shi f t ed) to reach the shf t out array of target signals. Figure
2-13 shows how the elementsin array shi f t ed map one-for-one to the elements
inarray shft out. The 10 nsdelay is represented by atimer that determines the
time when the waveforms are transferred. Labels SO through S3 represent the
values that were stored in shf t i n and then passed to the variable shi f t ed.

2-20 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

shifted| 0 | 1 | 2 | 3

S0 S1 S2 S3
shftout | |0 | |1 ||2 ||3

Figure 2-13. Variable Assignment for SHFTOUT Array After 10 ns

The previous MUX behavioral example uses an if statement to assign a
waveform to atarget signal when a given condition is satisfied. The shifter
example uses a case statement to perform asimilar function. A case statement
executes one out of a number of possible sequences of statements as determined
by the value of an associated expression. The basic format of a case statement is
shown as follows:

case statement case expression is
when choices=> --case stmnt alternative
sequence of _statements
end case;

The case statement in Figure 2-11 (lines 13 through 18 in the process statement
part) contains four case statement alternatives for theshftct| array,

shftctl (0) andshftctl (1). When one of the aternativesistrue, the
associated variable assignment statement is executed. A variable assignment
statement replaces the current variable value (target) with anew value as
specified by an expression. A variable assignment statement has the following
format:

variable assignment stmnt target := expression

Mentor Graphics Introduction to VHDL, July 1994 2-21

VHDL Fundamentals

The characters := are used together as the variable assignment delimiter. To

better understand the variable assignment process, consider each of the case

statement alternatives from Figure 2-11 one at a time starting with the following:
14 WHEN " 00" => shifted := shftin;

According to this case statement alternative, whenshft ct | (0) equals 0 and
shftctl (1) equalsO, thenthe variable array shi f t ed isassigned the valuesin
thearray shfti n. The compound delimiter '=>" separates the choices(WHEN
"00") from the sequence of statements (shifted : = shftin;).

The alignment of datain an array is determined by the order in which the array is
declared. The port clause definesarray shftct| asfollows:
4 shftctl : IN bit_vector(0 TO 1)

The order of datainthearray shftctl isOto 1 (ascending). Any referenceto
shftct! followsthisordering. Therefore, the first O (from the left) in the phrase
VHEN " 00" refersto the state of shftctl (0) and the second O (from the left)
refersto the state of shftctl (1).

The order of datain thearraysshfti n and shf t out isdefined in the port clause
as0to 3 (ascending order). Thevariableshi ft ed isdefined in the process
declarative part as 0 to 3 (ascending).

Figure 2-14 shows how the elementsin array shf t i n map one-for-one to the
elementsin array shi f t ed during execution of the following case statement
aternative:

14 VWHEN " 00" => shifted := shftin;

Labels VO through V 3 represent the values that are passed from each shf ti n
array element.

2-22 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

shftn| 0 | 1 | 2 | 3

shifted | |0 | |1 ||2 | |3

Figure 2-14. Variable Assignment for Array When SHFTCTL =00

Figure 2-15 shows how the elementsin array shf ti n map to the elementsin
array shi f t ed during execution of the following case statement alternative:
15 WHEN "01" => shifted := shftin(1 TO3) &'0";

shftn| 0 | 1 | 2| 3

Viv2v3 0
shifted |0 | {1 | |2 | |3

Figure 2-15. Variable Assignment for Array When SHFTCTL =01

Note that only three elements (1, 2, and 3) of theshf ti n array are transferred to
theshi ft ed array. Thefourth value ('0’) is concatenated to the arrayshf ti n by
using the concatenation operator &. The 'O’ istransferred along with the other
shfti n values. For acomplete description of the concatenation operator, see the

Mentor Graphics Introduction to VHDL, July 1994 2-23

VHDL Fundamentals

"Adding Operators" section in the Mentor Graphics VHDL Reference Manual.

Figure 2-16 shows how the elementsin array shf t i n map to the elementsin
array shi f t ed during execution of the following case statement alternative:
16 WHEN "10" => shifted :="'0 & shftin(0 TO 2);

In this alternative, the value’ 0’ is assigned to the first element of arrayshi f t ed
(shifted(0)) andthevaluesof shftin(0 to 2) areconcatenated tothe’0’ and

assigned to array elementsshi f t ed(1) through shi fted(3).

shftn| 0 | 1 | 2 | 3

‘0" VO V1 V2
shifted | |0 | |1 | |2 | |3

Figure 2-16. Variable Assignment for Array When SHFTCTL =10
Figure 2-17 shows how the elementsin array shf t i n map to the elementsin
array shi f t ed during execution of the following case statement alternative:

17 WHEN " 11" => shifted := shftin(0) & shftin(0 to 2);

Thevalue of shfti n(0) isassigned to two elements of array shi ft ed
(shifted(0) andshifted(1)).

2-24 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

shftn| 0 | 1 | 2 | 3

Figure 2-17. Variable Assignment for Array When SHFTCTL =11
To show further what happens when processf 2 is executed in the VHDL shifter
example, three conditions of theshf t ct | array are represented in the waveform
drawing of Figure 2-18 asfollows:

1. WHEN " 00" => shifted :

shftin;

2. WHEN " 10" => shifted :

"0 & shftin(0 to 2);

3. VHEN "01" => shifted :

shftin(l to 3) &’'0;

Each number at the top of the waveform drawing relates to the corresponding
condition in the previous numbered list. Arbitrary waveforms (data values) have
been assigned to theshfti n array elementsshfti n(3) toshftin(0). The
values of theshf ti n array elements are labeled V3 to VO for each condition
represented. The arrows show how the values flow from the shf t i n array to the
shi fted array (whentheshftctl signalschange state) and then to the shf t out
array 10 nslater.

Mentor Graphics Introduction to VHDL, July 1994 2-25

VHDL Fundamentals

1. Becauseshftctl (1) andshftctl (0) arebothlow in condition 1, the

valueson shftin(3) toshftin(0) (V3toVO0) passto the corresponding
shi ft ed array elements. Ten nanoseconds later, the same values pass from
theshi ft ed array elementsto theshft out array elements as determined
by the conditional signal assignment:

19 shftout <= shifted AFTER 10 ns;

A conditional signal assignment is further described on page 2-31.

. Because shftctl (1) ishighandshftctl (0) remainslow in condition 2,

the following conditions occur: alow (0) isforced onshi ft ed(0),

shi fted(1) takeson the high valuefromshftin(0), shifted(2)
remains high because of the high value from shftin(1), and shi ft ed(3)
takes on the low value from shftin(2).

. Becauseshftctl (1) islowandshftctl (0) ishighincondition 3, the

following conditions occur: alow (0) isforced onshi fted(3) soit
remainslow, shi ft ed(0) takesonthelow valuefromshftin(1) soit
remainslow, shi fted(1) takesonthelow valuefrom shftin(2),and
shi fted(2) takesonthelow valuefrom shftin(3).

To provide a complete picture of the four-bit shifter example, the structureis
shown in the schematic of Figure 2-19.

2-26

Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

V3 V3 V3 r
2, V2 V2) r
V1. V1 V1 [
V0O < VO 4 VO |
Ve V2, {0
—V2 VI N
w1 VO N V2
j 0 0 D\ V1 \
3 V2 0
V2 V1 V3
V1 VO V2
VO 10 Vi
10.0 20.0 30.0 40.0 50.0 60.0 |
Figure 2-18. Four-Bit Shifter Waveforms
]
shftctl (0:1) — L[]
AN ginr zU2
u1 i) et e b e qT]
8 dir | dirZU4 dir | dir

&

shftout (0

Figure 2-19. Schematic for a Four-Bit Shifter

Mentor Graphics Introduction to VHDL, July 1994

2-27

VHDL Fundamentals

Structural and Behavioral Description Summary
To summarize the preceding structural and behavioral description methods:

A VHDL structural description defines the interconnectivity of various
components. A behavioral description algorithmically defines circuit and
signal response to various stimuli.

A design entity isthe basic unit of a hardware description that represents a
cell, chip, board, or subsystem. Both the structural and behavioral
descriptions declare each design entity with an entity declaration. An
associated architecture body describes the relationships between the design
entity inputs and outputs.

The structural and behavioral descriptions largely differ in the architecture
body, as shown in the comparison of the MUX examplesin Figure 2-20.
The architecture body of the structural description, as shown in the top part
of Figure 2-20, contains an architecture statement part that describes the
interconnectivity of the components within the design entity. The
architecture body of the behavioral description, shown in the bottom part
of Figure 2-20, contains a process statement that describes the behavior of
the declared design entity.

If amodel contains asignal assignment statement or a concurrent statement that
has an associated signal assignment statement, it is not a structural description.
If amodel contains a component instantiation statement, it is not a behavioral
description.

2-28 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

1 ENTITY mux 1S -- STRUCTURAL ------
2 PORT (dO, dl1, sel: INDbit; q: OUT
3 END nux;

4

5 ARCH TECTURE struct OF mux IS -- a
6 COVPONENT and2

7 PORT(a, b: INbit; c: OQUT bit);
8 END COVPONENT

9 COVPONENT or 2

10 PORT(a, b: INDbit; ¢ OUT bit);
11 END COVPONENT

12 COMPONENT i nv

13 PORT (a: INDbit; c: QUT bit);
14 END COVPONENT;

15

16 SI GNAL aa, ab, nsel: bit;

17 FOR ul cinv USE ENTITY WORK. i
18 FOR u2, u3:and2 USE ENTITY WORK. a
19 FOR u4 :or2 USE ENTITY WORK. 0
20
21 BEG N
22 ul:inv PORT MAP(sel, nsel); --
23 u2: and2 PORT MAP(nsel, dl, ab);

24 u3: and2 PORT MAP(dO, sel,aa);

25 ud:or2 PORT MAP(aa, ab, Qq);

26 END struct;

1 ENTITY mux IS ----- BEHAVI ORAL- - - - -
2 PORT (dO, dl1, sel: INDbit; q: OUT
3 END nux;

4 -
5 ARCH TECTURE behav OF nux IS

6 BEG N

7 f1: --
8 PROCESS (dO, di, sel) --
9 BEA N

10 IF sel ='0" THEN

11 g <= di;

12 ELSE

13 g <= doO;

14 END I F;

15 END PROCESS f 1;

16 END behav;

entity declaration
bit); --port clause

rchitecture body

--architecture decl. part

decl arati on
-- config.
-- specif.

--signal
nvrt (behav);

nd_gt (dflw);
r_gt(archl);

architecture statenment part

entity declaration
bit); --port clause

archi tecture body
process statenent
sensitivity list

process statenent part

Figure 2-20. Comparing Structural and Behavioral Descriptions

Mentor Graphics Introduction to VHDL, July 1994

2-29

VHDL Fundamentals

Data-Flow Description

The following identifies some of the major language constructs found in a
data-flow description using the previous MUX and four-bit shifter examples.

A VHDL data-flow description and a register-transfer language description are
similar in that they describe the function of a design by defining the flow of
information from one input or register to another register or outpui.

The data-flow and behavioral descriptions are similar in that both use a process
to describe the functionality of acircuit. A behavioral description uses a small
number of processes where each process performs a number of sequential signal
assignments to multiple signals. In contrast, a data-flow description uses alarge
number of concurrent signal assignment statements. Concurrent statements used
in data-flow descriptions include the following:

o Block statement (used to group one or more concurrent statements)
o Concurrent procedure call

o Concurrent assertion statement

o Concurrent signal assignment statement

In addition to these language constructs, the process statement, generate
statement, and component instantiation statement are also concurrent statements.
These three additional concurrent statements are not usually found in a data-flow
description.

Concurrent statements define interconnected processes and blocks that together
describe adesign’s overall behavior or structure. A concurrent statement
executes asynchronously with respect to other concurrent statements. The
subsection " Contrasting Concurrent and Sequential Modeling” on page 4-28
provides more information on how concurrent statements execute.

Figure 2-21 can be considered a data-flow description of the same MUX example
used in the previous behavioral and structural description examples. This
exampleistoo simple to show the usefulness of a data-flow description because
it isalmost identical to the behavioral description in Figure 2-10 on page 2-15.

2-30 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

Both examples use one process statement (implied with the concurrent signal
assignment statement in Figure 2-21, lines 8 through 10) to define signal
behavior.

1 ENTITY nmux IS -- entity declaration

2 PORT (dO, dl1, sel: INDbit; g: OUT bit);--port clause

3 END nux;

4

5 -- architecture body

6 ARCHI TECTURE data flow OF nux IS

7 BEG N

8 csl : --concurrent sig. assgnmt stmt
9 g <= d1 WHEN sel ="'0" ELSE --conditional sig. assgnmt
10 do ;

11 END data fl ow,

Figure 2-21. Example of Data-Flow Description for a Multiplexer

The data-flow description contains the same entity declaration (lines 1 through 3)
used in the previous structural and behavioral description examples. The
architecture body contains a concurrent signal assignment statement that
represents an equivalent process statement that has the same meaning. The
format of a concurrent signal assignment statement is shown as follows:

concurrent signal label : conditional _signal_assignment
assignment statement - or
label : selected signal_assignment

In Figure 2-21 (lines 9 and 10), a conditional signal assignment performs the
signal assignments (q <= d1 or g <= d0) based on the conditions defined in the
conditional waveform. The format of a conditional signal assignment and the
associated conditional waveformiis:

Mentor Graphics Introduction to VHDL, July 1994 2-31

VHDL Fundamentals

conditional signal target <= options conditional waveforms;
assignmentcceeeee.
conditional waveforms waveform when condition else

waveform when condition else
waveform

The conditional signal assignment represents a process statement that uses an if
statement in the signal transform. The options (guarded and transport) are not
used in the conditional signal assignment in Figure 2-21.

For comparison, the behavioral description of the four-bit shifter from Figure
2-11 isshown again in Figure 2-22 (at the top of the figure) along with the
equivalent data-flow description of the same shifter (at the bottom of the figure).

The major difference between the two descriptions is that four process statements
areimplied in the data-flow description with the four conditional signal
assignments (lines 9 through 20). In the behavioral description, one process
statement is explicitly called (lines 9 through 20).

The data-flow example in Figure 2-22 uses the same entity declaration and
corresponding port clause as the equivalent behavioral description (lines 1
through 5). The architecture body in the data-flow description uses a concurrent
signal assignment statement that is composed of four conditional signal
assignments; one for each element of theshft out array. This concurrent signal
assignment statement does not use the optional label as does the one shown in
Figure 2-21, line 8.

2-32 Mentor Graphics Introduction to VHDL, July 1994

VHDL Fundamentals

1 ENTITY shifter 1S --BEHAVI ORAL--------- entity declaration

2 PORT (shftin IN bit_vector(0 TO 3); --port clause

3 shf t out QUT bit_vector(0 TO 3);

4 shftctl IN bit_vector(0 TO 1));

5 END shifter;

6

7 ARCHI TECTURE behav OF shifter IS -- architecture body

8 BEG N

9 f2: --process statenent

10 PROCESS (shftin, shftctl)

11 VARI ABLE shifted : bit_vector(0 TO 3);--process decl. part
12 BEG N

13 CASE shftctl IS --proc. statenent part
14 VWHEN "00" => shifted := shftin;

15 VWHEN "01" => shifted := shftin(l TO3) & '0;

16 WHEN "10" => shifted :="'0 & shftin(0 to 2);

17 VWHEN "11" => shifted := shftin(0) & shftin(0 TO 2);

18 END CASE;

19 shftout <= shifted AFTER 10 ns;

20 END PROCESS f 2;

21 END behav;

1 ENTITY shifter IS ------- DATA- FLOM - - - - - - - - - - entity declaration
2 PORT (shftin IN bit_vector(0 TO 3); -- port clause

3 shft out QUT bit_vector(0 TO 3);

4 shftctl IN bit _vector(0 TO 1));

5 END shifter;

6

7 ARCH TECTURE data_flow OF shifter 1S -- architecture body

8 BEG N --concurrent sig. assignment
9 shftout(3) <=0 AFTER 10 ns WHEN shftctl = "01" ELSE
10 shftin(3) AFTER 10 ns WHEN shftctl = "00" ELSE
11 shftin(2) AFTER 10 ns;--end cond. sig. assign. 1
12 shftout(2) <= shftin(3) AFTER 10 ns WHEN shftctl = "01" ELSE
13 shftin(2) AFTER 10 ns WHEN shftctl = "00" ELSE
14 shftin(l) AFTER 10 ns;--end cond. sig. assign. 2
15 shftout (1) <= shftin(2) AFTER 10 ns WHEN shftctl = "01" ELSE
16 shftin(1l) AFTER 10 ns WHEN shftctl = "00" ELSE
17 shftin(0) AFTER 10 ns;--end cond. sig. assign. 3
18 shftout (0) <= shftin(l) AFTER 10 ns WHEN shftctl = "01" ELSE
19 "o AFTER 10 ns WHEN shftctl = "10" ELSE
20 shftin(0) AFTER 10 ns;--end cond. sig. assign. 4
21 END data_fl ow,

Figure 2-22. Comparison of Behavioral and Data-Flow Shifter Descriptions

Mentor Graphics Introduction to VHDL, July 1994

2-33

VHDL Fundamentals

Constructs Found in Each Design Description Method

The following list itemizes the language constructs and functions found in each
type of VHDL design description method. The constructs common to all three
methods are listed above the dashed line, followed by the constructs that are
unique to a particular description method (below the dashed line).

Constructs Common to Structural, Behavioral, and Data-Flow M ethods

Entity declarations Package declarations Constant declarations
Architecture bodies Package bodies Subtype declarations
Function declarations Type declarations Concurrent assertions
Ports Generics Signals

Aliases Attributes Blocks

Constructs Uniqueto a Particular Design Description M ethod

Structural Behavioral Data Flow
Components Register and bussignals Register and bus signals
Config. specifications Concurrent assignments Concurrent assignments
Config. declarations Guards Guards
Generate statement Disconnection spec. Disconnection spec.

Procedure declarations
Procedure calls (seq.
and concurrent)
Sequential statements
Process statements
Variables
Assignments (variable
and signal)
Dynamic alocation

2-34 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

Section 3
Foundation for Declaring
Objects--Types

This section defines objects, types, and the different type classes provided by
VHDL. The section is organized into the following topics:

Various Classes of Type Definitions 34
Scalar Types 34
Composite Types 3-9
File Types 3-13
Access Types 3-13

Retrieving Information on Certain Kinds of Objects 3-14

In code examples in Section 2, objects are declared such as signals do, di, sel ,
and g found in the following port clause example (extracted from the codein
Figure 2-10):

PORT (dO, dl1, sel: INDbit; gq: QUT); --port clause

Objects are the containers for values of a specified type. Objects are either
signals, variables, or constants. Object values are manipulated with a set of
operators or subprograms. Each of the objects in the previous port clause
exampleis declared as being of thetype named bi t. Thetypebit isdeclaredin
the predefined package called "standard" as having avalue of 0 or 1 as shownin
the following example:

TYPE bit IS ("0, "1"); -- predefined type declaration
The types that you define, along with various predefined types, form templates
that you use when declaring objects. By declaring the signalsdo, d1, sel , and q

to be of a specific, well defined bi t type, the hardware designer’ sintent for these
signals (objects) is clearly documented.

Mentor Graphics Introduction to VHDL, July 1994 3-1

Foundation for Declaring Objects--Types

Once an object is declared of a certain type, operations can be performed on the
object within the bounds set in the type declaration. In the case of thetypebi t
the type declaration specifies that you can set the value of an object of thistype
toeithera’l’ ora’0’. If youtry to saj to 10, an error is generated because the
operation result for q isoutside the bounds of 'O’ and’1’. The operations
performed on the signals declared in Figure 2-10 are as follows:

IF sel =0 THEN q <= di;
ELSE g <= do;

When an object is declared to belong to a certain type, it takes on the structure or
boundaries set by the type declaration. This characteristic allows you tight
control over these objects. If you mix objects of different types or exceed
boundaries set by the type declaration, you are notified of an error condition.
The format of atype declaration is as follows:

type declaration typeidentifier istype definition;

Within the type declaration are various classes of type definitions as shown in
Figure 3-1. The type definitions are described in the following subsection.

O CAUTION
@
O

You should not use predefined type identifiers, such as those
declared as part of the predefined standard package, in your type
declarations. Using these identifiers can make your hardware
description very confusing or hard to understand later on. The
contents of package "standard" is documented in the Mentor
Graphics VHDL Reference Manual.

There may be times when you want to declare an object that uses a subset of
values of agiven type. Inthis case, you can define a subtype and associate an
object with that subtype. For example:

TYPE control _valves IS (on, off, standby, shutdown);
SUBTYPE of f _controls IS control val ves RANGE of f TO shut down;

3-2 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

Figure 3-1. Various Classes of Type Definitions Within a Type
Declaration

A subtype definition is not a new type; it is anew name for a contiguous subset
of the base type. A subtype declaration declares a contiguous subset of values of
a specified type and has the following format:

subtype declaration subtype identifier is subtype_indication ;

The subtype indication identifies restrictions placed on the subtype you declare.
Another subtype declaration example follows:

TYPE address_size IS RANGE O TO 255; --integer type decl.
SUBTYPE add_pi ece | S address_size RANGE 0 TO 128;

Mentor Graphics Introduction to VHDL, July 1994 3-3

Foundation for Declaring Objects--Types

Various Classes of Type Definitions

Within atype declaration, the following classes of type definitions are available.
They are explained in the following subsections.

e Scalar type definition o Composite type definition
0 Physica O Array
O Floating Point 0 Record
0 Enumeration o Filetypedefinition
O Integer o Accesstype definition

Scalar Types

Scalar types (physical, floating point, enumeration, and integer) completely
specify an item using an appropriate scale. The following subsections describe
each of these types in the order listed.

Physical Types

A physical type describes a quantity measurement of an item. This quantity is
expressed in amultiple of the base unit of measurement in arange that you
specify. A valid range boundary for most implementations includes integers
from -2,147,483,648 to +2,147,483,647. Some implementations can use arange
of integers with a 64-bit boundary. The format of a physical type definition is as
follows:

physical type definition range range
units
identifier ; --base unit_declaration
identifier = abstract_literal name;
end units

3-4 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

In the physical type definition format, the first line includes both the reserved
word range and a language construct called "range”’. The following example
shows the format for the language construct "range”. This construct is also used
in other type definitions.

(7= 1010 (= U attribute_name
--or
simple_expression to simple_expression
-- or

simple_expression downto simple_expression

The following example shows a type declaration that includes a physical type
definition for an item called neasur e. A rangefor measur e is specified from 0
to 1,000,000,000. The base unit declaration (line 3) defines the root measure of
measur e as millimeters. The secondary units are defined in multiples of the base
unit (lines 4 and 6) or in multiples of a previously defined secondary unit (line 5).

1 TYPE measure IS RANGE 0 TO 1000000000
2 UNI TS --type decl., physical type def.
3 nmm -- base unit _decl arati on:
mllimeter
4 cm= 10 mm -- secondary_unit_decl aration:
centinmeter
5 dm= 10 cm -- secondary_unit_declaration: decineter
6 m = 1000 mm -- secondary_unit_declaration: neter
7 END UNI TS;

Once the previous code has been inserted into a given design, you can define
objects of type neasur e. The following example shows objects called wand h
declared (as type neasur e) within the process declarative part (line 3).
Operations are performed on these objects within the process statement part.

1 process_si ze: --process | abel

2 PROCESS (sigl) --sigl is declared el sewhere.

3 VARI ABLE w, h : nmeasure; --process declarative part

4 BEG N

5 w= (100 cm+ 1 m - 10 mm--process statenent part

6 h:= 20 cm + w, --wand h results in base unit -
mm

7 sig2 <= z; --"sig2" and "z" are declared
el sewhere.

8 END PROCESS process_si ze;

A predefined physical type called "time" is declared in the standard package.
The actual range of type "time" is implementation dependent. To avoid

Mentor Graphics Introduction to VHDL, July 1994 3-5

Foundation for Declaring Objects--Types

confusion by overriding this predefined type, you should not use "time" asthe
identifier for your own type declarations .

Floating Point Types

Floating point types define a collection of numbers that provide an
approximation to real numbers. It isnot possible for hardware to handle an
infinitely long real number such as the result of dividing seven by three. Inthis
case you can approximate the real number as 2.33333. The basic format of a
floating point definition is shown as follows:

floating type definition range range

The following example declares atype called hal f _hour . A rangeis specified
between 0 and 29.99. Once thistype declaration is added to a hardware design
description, objects can be declared of the type hal f _hour , and floating point
operations can be performed on objects of this type.

TYPE hal f _hour I'S RANGE 0.0 TO 29.99; --floating point def.

If the operation result is not within the range specified in the type definition (as
shown in the following example), an error occurs. In this example the object
test _t1isdeclared astypehal f _hour. The result of the operation in the
process statement part causes object t est _t 1 to equal 30.05. Thisis outside of
the range specified in the type declaration so an error is reported.

test_tine: --process | abel
PROCESS
test _t1: half_hour; --process declarative part
BEG N
test t1:= 15.05 + 15.00; --Generates a result
END PROCESS test_tine; --out of range (ERROR)

A predefined floating point type called "real" is declared in the standard
package as a range of numbers from -1.79769E308 to + 1.79769E308 (platform
dependent). To avoid confusion by overriding this predefined type, you should
not use "real" astheidentifier for your own type declarations.

3-6 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

Enumeration Types

Enumeration types permit you to define a customized set of values. The format
of an enumeration type definition is as follows:

enumeration type definition (enumeration_literal1, ..., enumeration literaln)

An enumeration literal can be either an identifier (letters, underscores, and/or
digits) or acharacter literal (made up of a graphic character within single
guotes). When you specify alist of enumeration literals (separated by commas)
each one has a distinct enumeration value. Thefirst literal listed, on the left,
has the predefined position of zero.

An enumeration type you might want to create when modeling a hardware
design could be as follows:

TYPE wire_color IS (red, black, green); --customenum type

In the previous example the enumeration literal r ed occupies position zero,

bl ack occupies position one, and gr een occupies position two. If you create
another type declaration that uses the same enumeration literals as a previous
declaration, as shown in the following example, the repeated literals are said to
be overloaded if they appear in the same area (scope) of code. Overloading is
further described on page 5-6.

TYPE traffic_light IS (red, yellow green, flashing);

A number of predefined enumeration types are declared in the package called
"standard" including the following:

TYPE bit 1S (0", "1'); --predefined type with char. literals
TYPE boolean IS (FALSE, TRUE); --predefined enuneration type

In addition to those previously shown predefined types, the enumeration types

called "character" and "severity level" are also predefined in the standard
package but are not shown here.

Mentor Graphics Introduction to VHDL, July 1994 3-7

Foundation for Declaring Objects--Types

Integer Types

3-8

Integer types are sets of positive and negative (including zero) whole numbers
that you define. On a 32-bit (two’s complement) system, any range of integers
you define must be between -2,147,483,648 and +2,147,483,647. Integer types
include values of an infinitely larger type called universal integers. Universal
integers are an unbounded, anonymous type that represents all possible integer
literals. Anonymous types are those that cannot be referred to directly because
they have no name. The concept of universal integersis used to derive a
definition of an integer type. The following shows the integer type definition
format:

integer type definition range range

The range bounds you specify must be expression that can be evaluated during
the current design unit analysis (locally static expression), and they must be
integer types. Following are two examples of illegal range bounds to illustrate
these points. The first example shows an illegal range bound with one bound
(black) not being of an integer type (it is an enumerated type).

TYPE test _int IS RANGE O TO bl ack; --black is illegal range

The second illegal example is shown as follows to illustrate how a range bound
must be alocally static expression. Assume that a package called "external”
contains a deferred constant declaration called ext _val. Now in a separate
design unit (using "externa"), you try to declare the following integer type:

TYPE test _integer2 IS RANGE O TO ext _val; --illegal boundary

Thevariableext _var isan integer, but it cannot be evaluated in the current
design unit, therefore an error results. If ext _var had been defined within the
same design unit asthet est _i nt type declaration, ext _var could have been
evaluated and the boundary would be legal.

In addition to those already described, there is another consideration when
declaring and using integer types. The result of any operation performed on an
integer must be within the range boundary set in the integer definition. (A
similar situation is described in the "Floating Point Types" subsection starting
on page 3-6.

Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

There is one predefined integer type definition contained in the standard
package. It hasthe following format in a 32-bit system (platform dependent):

TYPE integer IS RANGE -2147483648 TO +2147483647;

Composite Types

Composite types allow you to specify groups of values under asingle identifier.
The composite types available in VHDL are array types and record types, as
explained in the following subsections.

Array Types

A named array is a collection of elements that are of the same type. Arrays may
be configured in one or more dimensions. Each array element is referenced by
one or more index values, depending whether it isasingle or amultiple
dimension array. See Figure 2-11 on page 2-19 for an example that shows how
objects are declared as one dimensional arrays of bits.

An array definition can be one of two kinds: an unconstrained array definition
or aconstrained array definition. As shown in the following example, a
constrained array has a specified index constraint that specifies the number of
array elements.

TYPE arrl IS ARRAY (0 TO 4) OF integer; --const. array def.
Theindex constraint inthe ar r 1 declarationis(0 TO 4) . Any object declared
to be of type arr 1 isan array with five elements as shown in Figure 3-2. In the
ar r 1 declaration, the type "integer" is used as the subtype indication, which
means each element of the array must be of type "integer”. The general format
of a constrained array definition is shown as follows:

constrained array definition array index_constraint of subtype indication

Mentor Graphics Introduction to VHDL, July 1994 3-9

Foundation for Declaring Objects--Types

el - 4 ...
) (€ \\4\\\\\0\\\\\\))((

Range For Type

) I)

Constrained Array
arrl

i nt eger |i nt eger i nt eger |i nt eger

0 4

Figure 3-2. Defining a Constrained Array Type

An example of atwo dimensional array definition and related type declarations
is shown in the following code example, and the corresponding array structure
isshown in Figure 3-3. A specific type (enumeration) is defined for each
dimension of the array and is followed by an array definition to specify the
structure for atype called nt r x. All elements within this array structure are of
thetypei nt eger. An object can now be declared that has the nt r x structure.

TYPE index_acrs IS ('a ,’b’,’c’,’d); --enumeration def.
TYPE i ndex_dwn IS (e’ f 'g’)' --enuneration def.
TYPE ntrx ISARRAY(lndex dvvn RANCE 'e’ TO'Qg’,
index_acrs RANGE "a’ TO 'd’) OF integer;
--constrai ned, two-dinensional array

A type declaration for an unconstrained array is different from a constrained
array, in that the unconstrained array has no specification of theindex. This
means that you can define an array type whose number of elementsis not
known as shown in the second line of the following example:

TYPE nmemarr 1S ARRAY (0 TO 1023) OF i nteger; --constrained
TYPE arr2 IS ARRAY (integer RANGE <>) OF nem.arr; --unconstrn

Thefirst line of the example defines a constrained array type nem ar r to create
an array structure with 1024 elements (0 to 1023). The second line defines

3-10 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

unconstrained array ar r 2 to have elements of the type mem ar r but without any
specific index boundaries. Each element of ar r 2 isan array structure with
1024 elements of type integer.

€ g
i ndex_dwn| |

b d | ndex_acrs

Wabcdg
e
f
g

Figure 3-3. Defining a Constrained Array Matrix

The phrase RANGE <> (range box) indicates that the ar r 2 index can range over
any interval allowed in the index subtypei nt eger, as shown in Figure 3-4.

: IR Y
Constrained Array
mem arr
i y
N J
No boundary v) (¢ No boundary
0 1023 0 1023”7 o 1023

FTTTTTTT 7Tl
Unconstrained Array

Figure 3-4. Defining an Unconstrained Array with Array Elements

) (€

Mentor Graphics Introduction to VHDL, July 1994 3-11

Foundation for Declaring Objects--Types

The format of an unconstrained array definition is shown as follows:

unconstrained array array (type mark range <>) of
definitionccccoeeeieennes subtype _indication

Record Types

A record is a composite type whose elements can be of various types. The
purpose of arecord isto group together objects of different types that can then
be operated on as a single object.

The record type definition defines a particular record type. It has the following
format:

record type definition record
identifier_list : element_subtype definition

end.r.ecord

The record type definition contains a series of element declarations, each of
which contains one or more element identifiers and a subtype indication for
those elements. All the element identifiers must be unique. The following
example shows two record type definitions.

TYPE coordi nates IS RECORD
xval ue, yval ue : integer;
END RECORD;

TYPE half_day IS (am pm;

TYPE clock_tinme 1S RECORD
hour : integer RANGE 1 TO 12;
m nute, second : integer RANGE 1 TO 60;
anpm : hal f _day;

END RECORD;

Y ou can read from and assign data to individual elements of arecord. To

access an individual record element, you use the selected-name construct, as
shown in the following examples:

3-12 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

VARI ABLE tinme_of _day : clock_tineg;
time_of _day.mnute := 35; -- loads 35 into el ement "mnute"

start_hour := time_of_day. hour; -- assigns value of elenent
-- "hour" to "start _hour"

When assigning values to or reading from record elements, the types of the
record elements must match the types of the variables; otherwise, an error
occurs. Y ou can also access arecord as an aggregate, in which case all the
elements are assigned at once, as shown in the following example:

VARI ABLE tine_of _day : clock_tineg;

time_of _day := (12, 05, 23, am;

File Types

This subsection introduces the concept of file types but does not go into specific
details because it is beyond the scope of this manual. For more information on
file types, refer to the Mentor Graphics VHDL Reference Manual.

File types allow you to declare external files that contain objects of the type you
specify. External filesrefer to those that are external to the main hardware
description model file. The following example shows the format of afile type
definition:

file type definition file of type_mark
Access Types
This subsection introduces the concept of access types but does not go into
specific details because it is beyond the scope of this manual. For more
information on file types, refer to the Mentor Graphics VHDL Reference
Manual.

Accesstypes let you designate objects that are variable. The following example
shows the format of an access type definition:

Mentor Graphics Introduction to VHDL, July 1994 3-13

Foundation for Declaring Objects--Types

access type definition ... access subtype indication

Retrieving Information on Certain Kinds
of Objects

Once an object has been declared, you might want to retrieve some information
from the object and use the result in an operation or test condition. VHDL
provides a number of predefined attributes that can examine certain parameters
of any one of the following kinds of objects:

e Arrays

o Blocks

e Signals (scalar or composite)

e Types (scalar, composite, or file)
This description of predefined attributes serves only as an overview. Refer to
the Mentor Graphics VHDL Reference Manual for a complete discussion of all
predefined attributes. The following is an example format of an attribute name,
which is used with both user-defined and predefined attributes to denote a
value, function, type, range, signal, or constant associated with a design entity:
attribute name.................... prefix’attribute_simple_name
Y ou use the apostrophe (") character followed by an attribute identifier to
designate a particular attribute. The prefix is the object name or function call

that the attribute will check.

The following example uses a standard predefined attribute (' event) in the
condition in line 10.

3-14 Mentor Graphics Introduction to VHDL, July 1994

Foundation for Declaring Objects--Types

1 LI BRARY ny_lib; USE ny_lib.my_qsimlogic.ALL;
2 ENTITY i nconpl ete_counter IS

3 PORT (clock, data: [IN my_qgsimstate;

4 g_out: INOUT ny_gsimstate);

5 END i nconpl ete_counter ;

6

7

8 ARCHI TECTURE behav OF inconplete_counter IS
9 BEG N
10 g_out <= data WHEN cl ock’ event AND clock ="'1" ELSE
11 g_out;

12 END behav;

Attribute’ event (commonly pronounced "tic event”) inline 10 isasignal
attribute. The attribute checks the signal ¢l ock and returns a Boolean value of
TRUE when thereis an event on cl ock, or avalue of FALSE if thereisno
event oncl ock. Figure 3-5illustrates the returned valuesfor cl ock’ event in
relation to thecl ock signal. Also shown in thefigureisthe returned values for
the entire condition cl ock’ event AND cl ock = ' 1’ . When the condition in
line 10 of the previous code example istrue, arising clock pulse has occurred
so the value of dat a isassigned to q_out .

clock ——— —
\ | | \

| | | |

| | \ |

true true true true
clock’event false y false V false y false V false

clock'event AND true el | ol
clock = 1’ alse ./ alse N/ alse

Figure 3-5. Signal Attribute Example

Mentor Graphics Introduction to VHDL, July 1994 3-15

Foundation for Declaring Objects--Types

The following example shows two predefined attributes, ’leftand 'right, that
operate on types. Type hi gh_byt e isdeclared in line 1 to have arange from 28
to 31. The bound values 28 and 31 are used in the loop parameter specification
in line 3 by using the’left and 'right attributes. Attribute’left returns the

hi gh_byt e bound value 28 and 'right returns the bound value 31.

TYPE high_byte |'S RANGE 28 TO 31;

- -sonet hi ng happens
END LOOP;

1

2

3 FORi INhigh byte left TO high_byte’ right LOOP

4

5

The previous example is used only to show the function of ’left and 'right.
VHDL provides amore efficient method of extracting the range of type

hi gh_byt e for aloop range as shown in the following code:

3 FORi IN high_byte LOOP --The range is 28 to 31

The following example shows another predefined attribute, * pos(x), that
operates on atype. Attribute’ pos(x) returns an integer value that equals the
position of the item that you define by supplying a parameter (x) to the
attribute.

In line 1 of the following example, an enumerated type called opcode is
declared. The opcode type contains nine instruction mnemonics. The
comment in line 2 shows the positional location of each mnemonic. Line4
declares constant st op to be an integer that is assigned avalue related to the
position of the corresponding halt (hl t) mnemonic. In other words, the result
of opcode’ pos(hlt) (which equals 8) is assigned to constant st op.

1 TYPE opcode | S (nov, |lda,sta,jnp,ret, add, sub, nop, hlt);

2 --positions 0 1 2 3 4 5 6 7 8

3

4 CONSTANT Stop : integer := opcode pos(hlt); -- stop =8
The previous examples give you a basic look at predefined attributes and how
you might use them in your hardware models. Refer to the Mentor Graphics

VHDL Reference Manual for a complete description of all the predefined
attributes and how to create user-defined attributes.

3-16 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Section 4
Constructs for Decomposing
Design Functionality

Many of the VHDL constructs have been previously introduced in the

structural, behavioral, and data-flow descriptions. The examples used in those

subsections solved relatively simple design problems.

This section identifies a number of VHDL constructs that allow the designer to
decompose a complex design into smaller and more manageable modules. This

subsection is divided into the following topics:

Concurrent Decomposition 4-3
Block Statement 4-4
Component Instantiation 4-7

Sequential Decomposition 4-12
Subprograms--Functions and Procedures 4-13
Function Call 4-24
Procedure Call 4-27

Contrasting Concurrent and Sequential M odeling 4-28

How Values Get Assigned to Signalsand Variables 4-36
Resolving a Signal VVaue When Driven by Multiple Assignment

Statements 4-43

Creating Shared M odules--Packages 4-43
Making a Package Visible--Library Clause and Use Clause 4-48

Mentor Graphics Introduction to VHDL, July 1994 4-1

Constructs for Decomposing Design Functionality

Consider the principles of concurrent and sequential operation as they relate to
hardware simulation. Figure 4-1 shows the execution order for the VHDL
statements in a hypothetical design during a given simulation timestep. The
term timestep is used to denote the smallest time increment of a simulator.
Timeis shown at the top increasing from left to right, the same as in the trace
window of a simulator (or on the screen of an oscilloscope).

/// \\\
— —
— Timestep 5 ~—
B1 B2 P1
e Block-—--ooooo Block-----oooo - . -—--Process---,
I e - I o | ‘
lcst |cs2 cs3) | |cs1 |cs2) |cs3 i i |ssi
‘ - - |
SS2
|
SS3

CS = Concurrent Statement
SS = Sequential Statement

Figure 4-1. Concurrent and Sequential Operations

4-2 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Most simulators run on systems with a single processor. With just one
processor, concurrent processes are not actually evaluated in parallel on the
simulator hardware. VHDL uses the concept of delta delay to keep track of
processes that should occur in a given timestep but are actually evaluated in
different machine cycles. A delta delay isaunit of time as far as the ssmulator
hardware is concerned, but as far as the simulation is concerned, time has not
advanced.

The processes in the two blocks (B1 and B2) and a process (P1) in Figure 4-1
are scheduled to execute (concurrently) within iteration 1 of timestep 5. The
term iteration is used to denote a delta delay unit. (This example does not
require a second iteration of timestep 5.)

Within blocks B1 and B2 are three concurrent statements that execute in
parallel. Within process P1 are three sequential statements. Statement SS1
executes first, followed by SS2, and then SS3. Once all statements have
finished execution, the simulator can advance to the next iteration or timestep.
Asfar asthe simulator is concerned, all of these operations (processesin B1
and B2, and P1) occur at the same time (during iteration 1 of timestep 5).

Concurrent Decomposition

This subsection identifies the constructs that define hardware functions that
execute concurrently. The main focus of this subsection is to describe the
following:

e Theblock statement, which isthe primary concurrent statement used to
decompose the hardware functionality into smaller modules

e The component instantiation statement, which defines the actual use of
declared components

Thefollowing list identifies the VHDL statements that execute concurrently
within a particular simulation timestep.

o Concurrent signal assignment statement (See Figures 2-21 and 2-22 on
pages 2-31 and 2-33, respectively, for examples.)

Mentor Graphics Introduction to VHDL, July 1994 4-3

Constructs for Decomposing Design Functionality

Process statement (See Figures 2-10 and 2-11 on pages 2-15 and 2-19,
respectively, for examples.)

Concurrent procedure call

Concurrent assertion statement

Block statement (used to group concurrent statements)
Component instantiation statement

Generate statement

Block Statement

The block statement allows you to group concurrent statements into one logical
unit, which describes a portion of your design. Figure 4-2 shows the blocksin
the overal VHDL hierarchy highlighted in bold-dashed lines. Ascanbeseenin
the figure, blocks can be nested to support the decomposition of the design.

The basic format of ablock statement is as follows:

block statement |abel :

4-4

block (expression)

block declarative item
begin
concurrent_statement
end block labd ;

Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

wwwwwwwwwwwwwwww

/
’
’

,
‘ !
,
,
, .
Lo \
= .
JX ,
. ,
e e
, ,
S0 b ,
, ,
[A ’
N ’
. .
\ ’ N \\
\ ’ Ay v
\ ’ A ’
N ’
N ’
N ’
Ny
“““““““““““

wwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwww

““““““““““ S E £
2 o
S ®
90 _Hh
..l.ml
S$o8
o C +
59%
CpU
nmq
O O o
OO0owm
I mnn
nowm
Ooowm

Figure 4-2. Relating Blocks to the VHDL Hierarchy

4-5

Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Y ou can use the optional guard expression to control the operation of certain
statements within ablock. To illustrate this point, Figure 4-3 shows the code

description and corresponding schematic for a bistable latch using a guard
expression.

1 ENTITY bistable latch IS

2 PORT (enable, data: IN bit;

3 g, g_not : QUT bit);

4 END bi stabl e_| at ch;

5

6 ARCHI TECTURE exanple OF bistable_ latch IS

7 BEG N

8 | atchl : -- bl ock | abel

9 BLOCK (enable = "1") -- guard expression
10 SIGNAL d_in : bit; --block decl. item
11
12 BEG N
13 d_in <= GUARDED data ; -- guarded sig. assignnent
14 q <=d_in ;
15 g_not <= NOT d_in ;
16 END BLOCK | atchl ;

17 END exanmpl e ;

Bistable Latch

1
[>
DATA | 8 5N DQ
ENABLE ; 0 0) o Q_NOT
Guard | — |

Figure 4-3. Using the Guard Expression on a Bistable Latch

The guard expression (enable =’ 1’) inline9 causes all guarded signa
assignments within the block to execute only when the guard expression is true.
In the case of the bistable latch, the enable signal must equal a 1 before the
guarded signal assignmentd_i n <= GUARDED dat a inline 13 will execute. In
other words, the d_i n signal does not take on the value of the dat a signal until
theenabl e signal isat al value. (Thedat a valueislatched until the enabl e
signal goes high).

4-6 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

If d_i n isnot updated with anew dat a value during a given timestep, the
signalsq and g_not are assigned the value of d_i n, which has not been
scheduled to change in the current timestep.

Two predefined block attributes (" behaviorand ' structure are available so you
can check if ablock isabehavioral or structural description. The expression
block label’ behavior returns a Boolean value of TRUE if the block does not
contain a component instantiation statement. The expression

block _label’ structure returns a Boolean value of TRUE if the block does not
contain asignal assignment statement or a concurrent statement that contains a
signal assignment statement.

If the following code was inserted between lines 16 and 17 of Figure 4-3, the
message "Bl ock latchl is not a structural description" would
appear from the assertion statements during simulation.

16a ASSERT | atchl behavior --If condition false, show report
16b REPORT "Bl ock latchl is not a behavioral description”
16¢c SEVERI TY not €;

16d ASSERT |l atchl structure --I1f condition fal se, show report
16e REPORT "Bl ock latchl is not a structural description”
16f SEVERI TY not e;

The assert statement generates the associated report if the conditionisfalse. In

line 16a, the condition | at ch1’ behavi or istrue so thereport in line 16b is not
generated. Inline 16d, the condition | at ch1’ st ruct ur e isfalse so the report

in line 16eis generated.

Component Instantiation

The language constructs for components are unique to the structural description
method. (Components are not used in pure behavioral or data-flow
descriptions.) The component declaration and the component instantiation
statement are described in this subsection along with the generic clause and port
clause.

Before a component is instantiated within an architecture body, you must
declareit. Component declarations are used within an architecture body to
describe the components to be connected within a given design entity. A
component declaration has the following format:

Mentor Graphics Introduction to VHDL, July 1994 4-7

Constructs for Decomposing Design Functionality

component declaration ... component identifier
generic_clause
port_clause
end component ;

Once a component has been declared and specified, you use the component
instantiation statement to describe each specific instance of the component and
to map the signals on each instance to the ports identified in the declaration.
The following format of a component instantiation statement is followed by the
format of a generic map aspect, port map aspect, and association list:

component instantiation label : name
statementcocoeeeeieeenee. generic_map_aspect
port_map_aspect

generic map aspect generic map

(‘association_list)

port map aspect port map
(‘association_list)

association list association_element , association_element ...

Figure 4-4 repeats the MUX structural code example from Figure 2-8 but
shades the areas that do not pertain to this description. The figure shows the
areas of code that pertain to the declaration, specification, and instantiation of
an AND gate.

The MUX ports (d0, d1, sel , and q) are defined in the entity declaration port
clause (line 3). These ports (called formal ports) define external connections to
the MUX design entity. Subsequent code describes the connection of internal
components to these formal ports as necessary.

The AND gate and2 is declared (component declaration) in the architecture
body (lines 8 through 10). The AND gate symbol on the right graphically
shows the port configuration of thisinternal component. These ports (called
local ports) are local to the component declaration within the nux architecture
body.

Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Further down in the architecture body of Figure 4-4 isa signal declaration
statement (line 18) that defines signals aa, ab, and nsel . These signals allow
the interconnection of the various components within the mux architecture body.

The configuration specification in line 21 binds the separate u2 and u3 instances
to a particular design entity (and_gt) and corresponding architecture body

(df I w) that describes the behavior of the AND gate. It ispossibleto bind a
different architecture (or entity declaration and architecture body) to u3 and
leave u2 bound to the df | warchitecture of the and_gt design entity.

The component instantiation statements are located in the architecture statement
part (lines 25 through 28). In this example, u2 and u3 are two separate
instances of the and2 gate. The port map in each instantiation statement maps
the ports to the appropriate signals. In thisway, circuit connection is described.
The bottom of Figure 4-4 shows the graphic representation of how the AND
gates fit into the total MUX description.

Mentor Graphics Introduction to VHDL, July 1994 4-9

Constructs for Decomposing Design Functionality

-- entity declaration
ENTITY mux 1S
PORT (dO, dl1, sel : INbit ; g: OQUT bit);
END nux;

-- architecture body
ARCHI TECTURE struct OF nux | S

F’OélT.l\l(E’\lT Emdlzw bi t OUT bit) } component -
a, : 1t; z: I ; . -
10 END COVPONENT; Declaration < |

OCOoO~NOOUIARWN

11 COVPONENT or 2

12 PORT(a, b: INDbit; z: OUT bit);

13 END COVPONENT; ,

14 COVPONENT i nv N
15 PCET (1 INbit - 2 dF bit) vConflguranon;

16 END COVPONENT; " Specification |
17 1 @

18 SIGNAL aa, ab, nsel: bit ; | %)\Q@/
19

20 FORul :inv USE ENTITY VWORK. lnvrt(behav) J

21 FOR u2,u3:and2 USE ENTI TY WORK. and_gt (dfl w); -

22 FOR u4 2 B EN e & %l
23 ‘

24 BEG N ~e. B A
25 ul:inv PORT MAP(sel, nsel): ®/V PO VS
26 u2:and2 PORT MAP(nsel, dl, ab); } > y < S

27 u3: and2 PORT MAP(dO, sel, aa); =
28 ud:-or2 PORT MAP(aa, ab, q) .
29 END struct;

Component
Instantiation

Figure 4-4. Instantiating an AND Gate in a MUX Description

4-10 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Figure 4-5 shows how a generic clause in an entity declaration allows parameter
customi zation when the design entity isinstantiated in a circuit description.

The entity declaration and2 is shown instantiated in a circuit description in
three places. The generic clause (prop_del ay : ti me) defines a parameter
called pr op_del ay (propagation delay) that hasavalue of atypecaledti ne.
All values passed back to pr op_del ay must be of the same type (in this case,

time).

Entity Declaration
Generic Clause -
prop_delay : time

>

Architecture Body 1@ Q \
Generic Map S
A prop_delay =>12 ns

. ArchitectureBody 2 - - o
b Generic Map R

prop_delay => 10 ns |- i %%
\\\\\ /?/////,’

Architecture Body 3
.| Generic Map
prop_delay => 8 ns

Figure 4-5. Instantiating a Component Using Different Parameters

The actual value for prop_del ay is passed back into the entity declaration with
ageneric map in each architecture body. In this example, architecture body 1

Mentor Graphics Introduction to VHDL, July 1994 4-11

Constructs for Decomposing Design Functionality

passes back atime value of 12 ns, architecture body 2 passes back atime value
of 10 ns, and architecture body 3 passes back atime value of 8 ns.

A port map performs a similar function to the generic map. A port map defines
which signals within the architecture body correspond with the ports that are
defined in the entity declaration or a component declaration.

Sequential Decomposition

This subsection identifies the constructs that define hardware functionality that
execute sequentially. The main focus of this subsection is to describe the two
parts of the subprogram construct: procedures and functions.

The following list identifies the VHDL statements and operations that execute
sequentially within a particular timestep.

o Control Statements e Assignments
O If statement 0 Signal assignments
0 Case statement 0 Variable assignments

0 Wait statement Assertion statement

o Looping statements o Return statement
O Loop statement o Null statement
O Next statement ¢ Subprograms

0 Exit statement

4-12 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Subprograms--Functions and Procedures

Declaration

ubprogram Body

Subprogram

Subprogram
eclaration

4Subprogram Body ‘7

A subprogram allows you to decompose the
hardware description into behavioral descriptions
or operations using algorithms for computing
values. The hardware’ s high-level activities are
declared using a subprogram declaration. The
actual operations areimplemented in a
subprogram body.

Subprograms have two forms. procedures and
functions.

The subprogram declaration specifies the
interface between the subprogram and the
external (to the subprogram) environment for
either a procedure or function, as shown in the
following example:

procedur e designator (formal_parameter_list) ;
- or
function designator (formal_parameter list)
return type mark ;

Mentor Graphics Introduction to VHDL, July 1994 4-13

Constructs for Decomposing Design Functionality

The subprogram body contains an algorithm or

behavioral description. It hasthe basic format as
Subprogram .))
Declaration shown in the following example:

procedur e designator (formal_parameter list) is
- or

function designator (formal_parameter list)

return type mark is

'Subprogram Body

subprogram_declarative part
begin
subprogram_statement_part
end designator ;

Subprograms are useful for decomposing large systems into smaller modules.

In atop-down design approach, you can decompose the solution into its primary
functions. At the high abstraction level for a hardware system, you create an
architecture body that contains the "what happens' details without including the
"how it happens' details. The "how" details can be placed in subprograms
(which can be placed in packages) that are called from the system architecture
body. This makes the system-level architecture description easier to read and
understand.

Because a subprogram can be a procedure or function, you need to decide
which one best fits your needs. It is best to use afunction when the "how it
happens' module returns a single value to the calling routine in the "what
happens" section. Y ou should use a procedure either to return multiple values,
to return no value, or to effect a change in some remote part of the system (such
as change adatavalue at a RAM location).

Figure 4-6 shows an example* of a system design description that uses three
procedures and one function. The large block on the left represents an
architecture body that contains the "what happens" design description. From
this description, various procedures and afunction are called to perform specific
actions. For this discussion, assume that the procedures are located in a
package called "ram_package".

*This same example is used in the Mentor Graphics VHDL Reference
Manual to describe subprograms in further detail.

4-14 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

The "how it happens' details are located in the procedures and function
(highlighted with bold lines in Figure 4-6). Theinset at the lower-right corner
of Figure 4-6 shows the coupling between the modules of code in another
format.

The following code is required to support the example in Figure 4-6 and is
shown for completeness. These lines are located throughout the "what
happens' code, not in the package that contains the procedures and function.

Thefollowing line islocated before the entity declaration of the calling
code to identify the logical name of the library containing the ram design
unit and the logical name of the library containing the ram_package:

LI BRARY |ib_stuff, package_stuff;

Each VHDL implementation uses some scheme to map each logical name
to aphysical location where the libraries reside on the node or network.

The following line can be declared in a declarative region, such as the
entity declaration or the architecture body of the calling code:
USE | i b_stuff.ram package. all;--Mikes package cont ai ni ng

--function and procedure
--visible to calling code.

The following lines are declared in the ram_package declarative part:

TYPE op_code_array IS ARRAY (0 TO 255)
CF bit_vector (0 TO 7);

Seethe library and use clause descriptions on page 4-48 for more information
on these constructs.

Mentor Graphics Introduction to VHDL, July 1994 4-15

4-16

Constructs for Decomposing Design Functionality

. "How it Happens"

"What Happens" Code 3 Code ‘
Op_Code(256) RAM Op_Code(256)
Procedure Call : Load 1
- ™ g AN RAM
- Procedure File <P DeDSg;'igtr'lon
- - Unit
Procedure Call Addres? 1
- RAM_Data(d) | RAM Ipam_code(s)
- <« 1 Read R

o Procedure
Procedure Call RAM_Data(4)

- 3 Concat
- 3 RAM Data
. RAM_Data_Conc

- < : Procedure

— - RAM_Data_Conc
Function Call | -

D Op_Code_Conc Check

- - Parity
Booleain Function
Value§

RAM_Package

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4-6. Using Procedures and Functions

Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

The RAM Load procedure shown in Figure 4-7 accepts operation code
(Op-code) supplied by the calling description and loadsit into 256 linesin a
RAM file that is also used by a separate RAM design unit. The code in Figure
4-7 isnot good use of a procedure because it only accepts one parameter, but it
is used here to show how to cause a change in aremote design unit without
affecting a change in the calling code.

i Subpr ogram Decl aration - Procedure ------
2 PROCEDURE ram | oad (CONSTANT Op_code : I N op_code_array);
3

4 - Subprogram Body - Procedure -------------------
5 PROCEDURE ram | oad(CONSTANT Op_code : IN op_code_array) IS
6 FILE ramcntnts: op_code_array IS IN

7 "/idealuser/vhdl lib/raml file";

8

9 BEG N
10 FOR a I N Op_code’ RANGE LOOP
11 wite(ramcntnts, Op_code(a));--load op_code into file
12 END LOOP;

13 END ram | oad,;

Figure 4-7. Code Example of a Subprogram--RAM Load Procedure

The RAM Load procedure in Figure 4-7 consists of a declaration and a body.
The subprogram declaration (line 2) couples the procedure to the calling code
by specifying one input constant (Op_code) expressed as having atype of
op_code_ar ray (atemplate for a 256-element array { 0 to 255} of 8-bit

{Oto 7} vectors).

The subprogram body (line 5) starts by repeating the subprogram specification
from the subprogram declaration. This procedure does not return a value to the
calling code, but it does change the contents of afile for the separate RAM
design unit.

The subprogram statement part (line 11 of Figure 4-7) calls a predefined
procedurewr i t e to load an element of theop_code array tofileraml_file
declaredinlines6 and 7. The write procedure isimplicitly defined with the
ram cnt nt s file declaration in lines 6 and 7 of Figure 4-7 asisaread and
endfile procedure.

Mentor Graphics Introduction to VHDL, July 1994 4-17

Constructs for Decomposing Design Functionality

Thew i t e procedure requires two parameters: first the file declaration
identifier (r am _cnt nt s) and then the data to be passed (op_code). Thefile
declaration identifier (r am cnt nt s inline 11) associates the file declaration
with the actual filerami_fil e. Theloop statement (lines 10 and 12) causes the
write procedure to execute for each element of the Op_code array.

In general, Figure 4-7 shows how you can use a procedure to cause a side-effect
without returning a value to the calling code.

Figure 4-8 shows the code for the RAM Read procedure (from the example in
Figure 4-6). Ther am r ead procedure returns two separate values to the calling
routine; ram dat a (afour-element array) andt est _add_st art (test address
start). The purpose of this procedureisto read four consecutive data values
fromtherant_fi | e randomly and to return these valuesto the calling routine.
Later the returned values are checked against the original op-code datato check
if the RAM data has been corrupted. This procedure also returns the starting
address value so the later operation knows where to start for a comparison
check.

The following type declaration must be declared in ther am package
declarative part so this type declaration isvisible to ther am r ead procedure
and the code that callsther am package. Thistype declaration creates a
template for afour-element array, each containing an eight-bit vector.

TYPE ram data _array IS ARRAY(O TO 3) OF bit_vector(0 TO 7);

The subprogram declaration and subprogram body in Figure 4-8 start out by
specifying the two output variables that pass the data (r am dat a) and address
(test _add_start) information back to the calling routine.

Line 17 in Figure 4-8 generates a starting address (addr ess) by performing a
number of operations. The first operation calls a predefined function r and from
the predefined math package which is declared as follows:

FUNCTI ON rand(seed : real) RETURN real;

The use clause in line 10 makes the math package visible. Only ther and

function is directly visible from the math package because it was explicitly
called in the use clause.

4-18 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Ther and function in line 17 generates a random floating point number

between 0 and 1.0. The function accepts a seed value which is declared as a
constant in line 14 and set to 0.1. As an example, assume this function returns a
value of 0.654321.

The second operation in line 17 multiplies the returned value from the r and
function by 63.0 to generate afloating point number between 0 and 62.99.
Continuing with the 0.654321 value from the previous paragraph, the second
operation returns 41.2222 (0.654321 % 63.0 = 41.2222).

The third operation in line 17 uses the type conversion construct to convert the
floating point value between 0 and 62.99 into an integer value between 0 and
63. The number 63 is derived by dividing the 256 address |ocations into equal
blocks of 4 consecutive addresses (64 blocks, from 0 to 63). The conversion
would take value 41.2222 and convert (round) it to integer 41.

The fourth operation in line 17 multiplies the integer value of 0 to 63 by four to
generate the starting address for one of the address blocks. The last address
block starts at address 252, so the final result from the operationsin line 17
should not exceed thisvalue. (Thisexampleyields41 % 4 = 164.) Thefina
operation in line 17 assigns the result to variable addr ess.

Line 18 assigns the starting addressto variablet est _add_start, whichis
returned to the calling code.

Mentor Graphics Introduction to VHDL, July 1994 4-19

Constructs for Decomposing Design Functionality

i Subpr ogram Decl aration - Procedure --------
2 PROCEDURE ram read (VARI ABLE ram data: OUT ram data_array;

3 VARI ABLE test _add_start: OUT integer);

4

5 @ e Subprogram Body - Procedure ---------------
6 PROCEDURE ram read (VARI ABLE ram data: OUT ram data_array;

7 VARI ABLE test_add_start: OUT integer) IS

8 FILE ramcntnts: op_code_array IS IN

9 "/ideal/user/vhdl lib/ranml file";
10 USE std. nat h. rand; -- Makes rand function from nmath

11 -- package visible to this procedure.

12 VARI ABLE address : integer ;
13 VARI ABLE op_code : op_code_array;

14 CONSTANT Seed - real := 0.1,

15

16 BEG N -- generate random address

17 address := integer(rand(Seed) * 63.0) * 4; --between 0 & 252

18 test _add_start := address;

19 FOR a INO TO (address + 3) LOOP -- Read file unti
desired

20 read(ramcntnts, op_code(a)); -- data is reached.

21 | F a >= address THEN

22 ram data(a - address) := op_code(a); --extract desired
dat a

23 END I F

24 END LOOP

25 END ram r ead,;

Figure 4-8. Code Example of a Subprogram--RAM Read Procedure

4-20 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

The loop statement (lines 19 and 24) in Figure 4-8 is set to loop from O up to the
starting address plus 3. In thisexampleit loops from 0 to 167. For each pass
through the loop statement, the predefined read procedure* inline 20 is
executed. Thefirst time through the loop, the read procedure returns the value
of linelof filerami_fil e tothefirst element (0) of array op_code. Each
consecutive loop retrieves the next eight-bit array value fromrami_fi | e and
loads it to the appropriate e ement of the op_code array. When the loop
counter (a) of line 19 in Figure 4-8 equalsthe addr ess value (164 inthis
example), the if statement condition in line 21 istrue and line 22 is executed.
Aslong as the loop counter is greater than or equal to the addr ess value, the if
statement is executed. In this example the value of op_code(164) isassigned
toram dat a(0) , on the next pass through the loop the value of op_code(165)
isassigned tor am dat a(1) , and so it goes until all four elements of r am dat a
have been filled.

Figure 4-8 shows how you can use a procedure to return multiple values to the
calling routine.

Figure 4-9 shows the code for the Concatenate Data procedure (from the
examplein Figure 4-6). This procedure receivesther am dat a array from the
calling routing and returns one parameter (r am dat a_conc). This procedure
concatenates the four 8-bit r am dat a bit vectors into one 32-hbit

ram dat a_conc bit vector (lines 11 and 12 of Figure 4-9).

*The read procedure isimplicitly defined with ther am cnt nt s file
declaration in lines 8 and 9 of Figure 4-8 asis awrite and endfile procedure.

Mentor Graphics Introduction to VHDL, July 1994 4-21

Constructs for Decomposing Design Functionality

i Subpr ogram Decl aration - Procedure ------
2 PROCEDURE concat _data (

3 CONSTANT Ram dat a . IN ram data_array;

4 VARI ABLE ram data_conc : QUT bit_vector (0 TO 31));

5

6 @ -------- Subprogram Body - Procedure ------------------
7 PROCEDURE concat _data (

8 CONSTANT Ram dat a - IN ram data_array;

9 VARI ABLE ram data_conc : QUT bit_vector (0 TO31)) IS
10 BEG N

11 ram data_conc: = Ram data(0) & Ram data(l) &

12 Ram dat a(2) & Ram dat a(3) ;

13 END concat _dat a;

Figure 4-9. Example of a Subprogram--Concatenate Data Procedure

Now that you have seen various uses of procedures, examine the function
examplein Figure 4-10. The purpose of this function is to check the parity on
the 32-bit ram dat a_conc and op_code_conc bit vectors, compare the results,
and then return a TRUE or FAL SE Boolean value to the calling code.

The function in Figure 4-10 starts out the same as does the previous procedure
examples. Theinput parameters* are specified in the subprogram specification
in both the declaration and body. In this example, the function receives two
input bit vectors; r am dat a_conc and op_code_conc.

Two local variables are declared in line 10 of the subprogram body (sunmt and
sun®) to hold the parity result for each input bit vector. The loop (lines 12
through 19) cycles through 32 times, once for each of the 32 bitsin the
concatenated arrays. The return statement (line 20) returns a TRUE Boolean
value if suml = sum2; otherwise a FAL SE valueis returned.

*Functions cannot use "out" or "in/out" parameters in the subprogram
specification because a function returns only a single value.

4-22 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

i Subpr ogram Decl aration - Function ---------

2 FUNCTI ON chk_pty (CONSTANT Ram data_conc: IN bit_vector(0 TO
31);

3 CONSTANT Op_code_conc : IN bit_vector(0 TO
31))

4 RETURN bool ean;

5

I e Subprogram Body - Function ----------------

7 FUNCTI ON chk_pty (CONSTANT Ram data_conc: IN bit_vector(0 TO
31);

8 CONSTANT Op_code_conc : IN bit_vector(0 TO
31))

9 RETURN bool ean | S

10 VARI ABLE suml, sun® : bool ean : = fal se;

11 BEG N

12 FORi INO TO 31 LOOP

13 IF Ramdata_conc(i) ='1 THEN -- conpute parity for

14 suml : = NOT sunt; -- concatenated ram dat a

15 END | F;

16 IF Op_code conc(i) ='1" THEN -- conpute parity for

17 sun? : = NOT sun®; -- concatenated op code data

18 END | F;

19 END LOOP;

20 RETURN suml = sun®; -- return true if sunil=sun®,

21 END chk_pty; -- false if not equal

Figure 4-10. Code Example of a Subprogram--Parity Checker Function

Mentor Graphics Introduction to VHDL, July 1994

4-23

Constructs for Decomposing Design Functionality

The following list summarizes the main features of the subprogram types:
functions and procedures.

Functions Procedures
¢ Produce no side-effects ¢ Can produce side-effects
e Only accept input (in) e Accept input (in), output (out),
parameters and input/output (inout)
parameters

¢ Returnjust onevaue
e Do not have to return any value
o Always use the reserved word or can return multiple values
return
e Do not require the reserved word
return

To complete the description of procedures and functions, the constructs for
calling afunction or procedure are described in the following subsections.

Function Call

A function call is used as part of an expression to execute the named function,
specify actual parameters (if any), and return one value to the expression. The
function call can be part of a sequential or concurrent decomposition. This
description isincluded here to show how subprograms can be used. The format
of afunction call is shown in the following paragraph along with the format of
the association element construct:

functioncal name (association_element, ...)

association element formal _part => actual_part

The Check Parity function call in Figure 4-6 could appear as the Boolean
expression in an assert statement such as the following:

4-24 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

ASSERT chk_pty (op_code_conc => op_code_c,
ram data_conc => ram data_c)
REPORT "Parity Check Failed." --report if condition false
SEVERI TY not e;

The string literal "Parity Check Fail ed" inthereport issent from the assert
statement if chk_pt y returns a FALSE value. The association €lements shown
in this example use the optional formal part. The formal part associates a
formal parameter (from the function) with the related actual parameter (in the
calling code), as shown in Figure 4-11.

' chk_pty (op_code_conc => op_code_c, ramdata_conc => ram data_c)

Actual Part Function
(In Function Call) Call
Chk_Pty
. . Returned
—32-bits —32-bits Value
op_code_c) ram_data_c | __~ @
<
‘ Data Data
Flow Flow
| : Yy \i
. Function
- Chk_Pty 32-bits ——32-bits
i
| op_code_conc ram_data_conc Return
Value
Formal Part

(In Function Call)

FUNCTI ON chk_pty (CONSTANT ram data_conc: IN
CONSTANT op_code_conc : IN
RETURN bool ean . ..

it_vector(0 TO 31);
it_vector(0 TO 31))

[exgey

Figure 4-11. Associating Actual Parameters to Formal Parameters
Theformal part op_code_conc from the function chk_pt y isexplicitly

associated with op_code_c (denoted with acoiled line in Figure 4-11) in the
function call, and r am dat a_conc isexplicitly associated withr am data_c in

Mentor Graphics Introduction to VHDL, July 1994 4-25

Constructs for Decomposing Design Functionality

the function call. Thisassociation istermed "named notation" or "named
association”. It does not matter how the association el ements are ordered in the
function call when you use the named association. Y ou must, however, be
careful that the type of the each formal parameter matches the type of the
associated actual parameter.

If the optional named notation is not used in a function call, the association is
determined by the order in which the parameter(s) are listed in the function and
the function call. Figure 4-12 shows a modified version of the previous
function call example that does not include the optional formal part.

,,

chk_pty (ramdata c, op_code_c)

Function
Actual Part Call
(In Function Call) Chk_Pty
. . Returned
—32-bits —32-bits Value
ram _data ¢ | __- op_code_c)
-
Data Data
Flow Flow
| : \j \j
.~ Function
Chk_Pty ——32-bits —32-bits
ram_data conc op_code_conc Return
element 1 element 2 Value
Formal Part
FUNCTI ON chk_pty (CONSTANT ramdata conc: IN bit_vector(0 TO 31);
! CONSTANT op_code_conc : IN bit_vector(0 TO 31))

RETURN bool ean ...

Figure 4-12. Positional Parameter Notation in a Function Call

The order of the actual parameters (in the function call) determines which actual
parameter is associated with the corresponding formal parameter (in the

4-26

Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

function). Thisordering is called "positional notation” or "positional
association”.

In Figure 4-12, sincer am dat a_c isthe first parameter listed in the function
call, it is associated with the first element in the function (r am dat a_conc).
The second parameter in this function call (op_code_c) is associated with the
second element in the function (op_code_conc).

Procedure Call

A procedure call can be either a concurrent statement or a sequential statement.
A procedure call simply executes the named procedure. The format of each
type of call (concurrent or sequential) is shown in the following examples:

Concurrent Statement
concurrent procedurecall label : name (' association_element, ...) ;

Sequential Statement
procedure call statement.. name (association_element, ...) ;

The format of a procedure call statement is similar to the format of afunction
call. Figure 4-13 shows how the RAM Read procedure call might look from the
example shown in Figure 4-6. This procedure call associates formal part

r am dat a with actual part ram dat a_i n and associates formal part

test _add_start with actual part start _address.

This procedure call receives the four, eight-bit r am dat a array elements and the
test _add_start integer from the called procedure. These values can then be
used within the calling code.

If the optional named association is not used in a procedure call, the association
is determined by the order in which the parameter(s) are listed in the procedure
and the procedure call. Thisfeatureisidentical to the positional association for
afunction call. The procedure call from Figure 4-13 could be rewritten as the
following:

ramread (ramdata_in, start_address) ;

Mentor Graphics Introduction to VHDL, July 1994 4-27

Constructs for Decomposing Design Functionality

The order of the actual parameters (in the procedure call) determines which
actual parameter is associated with the corresponding formal parameter (in the

procedure). Also refer to the previous description of afunction call on page
4-24.

' ramread (ramdata => ramdata_in, test_add _start => start_address) ;

| Procedure
_ ' _ _ start_address Call
| 8-bItS%/,L8-bItS%/L8-bltS%S-bltS — RAM_Read
: o [[1 [2 [3 :
i ! ﬂnteg
ram_data_in - -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Data | Dbata % |
Flow Flow
~ Procedure [g o 1[5 bits | |8-bits | [8-bits ntege
. RAM_Read
‘ - 1 o [1 J] 2 || 3
ram data test_add_start
iPROCEDURE ramread (VAR ABLE ram data : QUT ram data_array ;

VARI ABLE test_add_start : OUT integer (0 TO 255))... !

Figure 4-13. Procedure Call Parameter Association

Contrasting Concurrent and Sequential
Modeling

When modeling a complex circuit or system function, you must make sure to
model the correct behavior regarding concurrent and sequential tasks. The

following simple design example shows the modeling tasks from the truth table
down through several model abstraction levels.

4-28 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Table 4-1 shows the truth table for an AND/OR/Invert (AOI) circuit function
which is used as this design example. This circuit has four inputs (A through
D) and one output (E). These inputs and output are of type my _gsim_state.
Assume a zero propagation delay through the circuit.

Table 4-1. AND/OR/INVERT Truth Table

o8]
@)
O

R R RRRRRROOOOOOOOX
OO0 00O R R RFRORRRORRERRFLRM

P PR RPOOOCO R KR EFRPREFLOOOO

il lleliell i Jllelliell JJi Jdlieliell i Jllelle
P OO OO ORrOoORroro

The my_gsim_state typeis defined in a package called "my_qgsim_logic". This
example assumes the package resides in alibrary with alogical name of
"my_lib". The use clausein line 1 makes this package visible to the aoi design.
For reference, the my_gsim_state type declaration is shown here:

TYPE ny_gsimstate IS ("X, "0, "1', 'Z);

Using the information you have so far, you can write the entity declaration (in a
design file), as shown in the following example:

Mentor Graphics Introduction to VHDL, July 1994 4-29

Constructs for Decomposing Design Functionality

LI BRARY ny_lib; USE ny_lib.my_qsimlogic.ALL;
ENTITY aoi IS
PORT (A, B, C, D: IN ny_qgsimstate;
E: QUT ny_gsimstate);

b wWNPE

END aoi ;

Next you can ssimplify the truth table using a Karnaugh map as shown in
Table 4-2. Theresulting Boolean equationis. E=AB + CD.

Table 4-2. AND/OR/Invert Karnaugh Map

AB
CD 00 01 11 10
00 1 1]/o) 1
01 11 0] 1
11 |0 | 0 |0] 0)
10 1 1 0]/ 1

Using the Boolean equation, you can write the following architecture body in a
separate design file or in the same design file as the entity declaration:

1 ARCHI TECTURE behavl OF aoi 1S

2

3 BEG N

4 E <= NOT((A AND B) OR (C AND D)); --con. sig. asgnnt stnt
5 END behav1i;

This code can now be compiled and simulated to verify that it performs
according to the truth table. The concurrent signal assignment statement
performs as the name implies; it assigns the result of the expression on the right
sideto the signal (E) on theleft side. Thisassignment is donein parallel with
any other concurrent statements that occur (there are nonein this example) in
the architecture body.

If you need a behavioral model only to describe a certain set of output
conditions given multiple input conditions, you would not need to go down to a
lower abstraction level. However, if you want to implement the design into
hardware/silicon, you would continue as follows.

4-30 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Theequation E <= NOT((A AND B) OR (C AND D)) impliesthree basic logic
functions; AND, OR, and an inverter. The next abstraction level description
you write could be the following data-flow description (df | owl) on the left or
the equivalent behavioral description (behav2) ontheright. (The comments
CS1 through C4 indicate concurrent statements and SS1 through SS4 indicate
sequential statements.)

1 ARCH TECTURE df | owl 1 ARCH TECTURE behav2

2 OF aoi IS 2 OF aoi IS
3 SI GNAL O1, O2, GB: 3 BEG N

4 nmy_qgsi m st at e; 4 PROCESS (A, B, C, D
5 BEG N 5 VARI ABLE O1, 2,

6 E <= NOT OB; --Cs1 6 G3: nmy_qgsi m st at e;
7 OL <= A AND B, --Cs2 7 BEG N

8 @2 <= CAND D, --Cs3 8 OL := A AND B; --SS1
9 B <=0 R, --CA4 9 2 := C AND D, --SS2
10 END df | owl; 10 B := 0 OR X;--SS3

11 E <= NOT OB; --S$4
12 END PROCCESS;
13 END behav?2;

When writing either the df | owl or the behav2 descriptions, be sure to model
the concurrency of the actual tasks correctly. Because this example assumes a
zero propagation delay, all assignments are performed in paralel. The
evaluation flow within a given timestep for behav1, df | owl, and behav?2 is
shown in Figure 4-14.

In the df | owd architecture, the order of the concurrent statements (lines 6
through 9) is not important since the ssmulator executes each statement in
arbitrary order within a given timestep. Y ou probably would order them with
line6 (E <= NOT (8;) at the bottom for clarity, even though it does not affect
the order of evaluation during simulation.

The behav2 architecture requires some special considerations regarding the
concurrency of the circuit operation. A processis used to group the statements
that define the circuit behavior. Because a processis a concurrent statement, it
executes in parallel with any other concurrent statement. It isimportant to
realize that statements within a process execute sequentially. Variables are
declared (lines 4 and 5) within the process to mimic the internal networks
shown as O1, 02, and O3 in Figure 4-15. Signals cannot be declared within a

Mentor Graphics Introduction to VHDL, July 1994 4-31

Constructs for Decomposing Design Functionality

process.
Time Step for Architecture behavl
|
Cs1
Iteration 1 ‘
Iteration 2
Time Step for Architecture dflowl Time Step for Architecture behav2
P1
----Process----,
: | ‘
CS2| | CS3 | sS1
j |
lteration 1 i SS2
”””””””””””””””””””””””””” : \
SS3
Cs4 ‘
Iteration 2 i SS4
lteraton1 * 7777777777
CS1| || e
Iteration 3 * Iteration 2
dflowl uses one to three iterations.

Figure 4-14. Evaluation Flow for First Behavioral AOI Models

The statements in architecture behav2 must be ordered as shown to be sure that
the circuit behavior is modeled properly. If you start a simulation run by
forcing values of 'O’ onthe A and B inputsand ’'1’ on the C and D inputs, the
code will execute in a sequential manner (shown in the comments) as follows:

4-32 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

1 ARCHI TECTURE behav2 OF aoi 1S

2 BEGN

3 PROCESS (A, B, C, D -- 1. Changeson signals activates process.
4 VARI ABLE 01, Q2,

5 G3: nmy_qgsimstate;

6 BEG N

7 Ol := A AND B; -- 2. Olisassigneda’0’,’0’ AND'0O ='0
8 @ := C AND D -- 3. Q2isassigneda’l’, '’ AND'1l ="7
9 B = 0L OR -- 4. O3isassigneda’l’,’0' OR '1'="1
10 E <= NOT GCB; -- 5. Eisassigneda’0’, INVERT 1’ ='0
11 END PROCESS;

12 END behav?2;

Now consider the same code, but this time with the statements out of order as
shown in the following example. The same values as previously described are
used on this model, but this time you will notice the model does not perform
correctly.

1 ARCH TECTURE behav2 OF aoi IS

2 BEGN - - WRONG BEHAVI OR

3 PROCESS (A, B, C, D --1. Changeson signals activates process.
4 VARI ABLE 01, 2,

5 (3: ny_qsimstate;

6 BEG N

7 B =0l OR ; --2. O3isassignedan’X’, "X’ OR "X’ ='X’
8 Ol := A AND B; --3. Olisassigneda’0’,’0 AND'O' ='0
9 @ := C AND D --4, O2isassigneda’l’, '1T’ AND'1 ='1
10 E <= NOT GCB; --5, Eisassigned an’ X', INVERT ' X’ ='X’
11 END PROCESS;

12 END behav2; --WRONG BEHAVI OR

In line 7 of the previous example, the assignment was made using the previous
simulator state of X’ for O1 and O2 because A, B, C, and D were all ' X’ before
values were applied. The model does not perform properly because the
statements are executed sequentially, and they are not ordered properly.

When denoting an’ X' or 'Z’ state of type my_qsim_state, you must use

uppercase characters. The'X’ and’Z’ of themy_qgsim_state type are character
literals, which means they are case-sensitive.

Mentor Graphics Introduction to VHDL, July 1994 4-33

Constructs for Decomposing Design Functionality

By now the structure of this circuit may be apparent and is shown in the
schematic in Figure 4-15 to be used as a reference for the rest of this discussion.

Al oil
B 0 B

cz>jozI o 3—E
D 0

Figure 4-15. AND/OR/Inverter Circuit

Figure 4-16 shows the three distinct functionsin this circuit. The OR function
is dependent on the outcome of the AND operation, and the invert function is
dependent on the outcome of the OR operation. This arrangement shows a
necessity for three iterationsin a given timestep.

The following description shows another way to describe the behavior of the
circuit that will be implemented in hardware. Process Pl isequivalent to
concurrent statement "8 <= 01 OR O2; ", which could appear in the
architecture statement part. Process P2 is equivalent to concurrent statement
"E <= NOT @B;".

1 ARCHI TECTURE behav3 OF aoi IS
2 SIGNAL O1, @2, O3: ny_qgsi m st at e;
3

4 BEG N

5 Ol <= A AND B; -- Csl

6 2 <= C AND D -- CS2

7

8 P1: PROCESS (01,)

9 BEG N

10 B <=0 RX®;, -- Ss1
11 END PROCESS;

12

13 P2: PROCESS ()
14 BEG N
15 E <= NOT GB; -- SS1
16 END PROCESS;

4-34 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

17 END behav3;

AND functionality

OR functionality

Inverter functionality

Figure 4-16. Operation-Flow Diagram for AOI Circuit

In architecture behav3, lines 5 and 6 perform the AND operations concurrently
as before. The simulation requires one iteration of atimestep. Process P1 does
not execute in iteration 1 because O1 and O2 will not have changed value until
the end of the iteration. Process P2 does not execute because O3 has not

changed value.

When iteration 2 begins, Process P1 executes and causes a change to O3 (at the
end of the iteration). Process P2 executes in iteration 3 and makes the
assignment to output E. Architecture behav3 best represents the internal
behavior (apart from a structural representation) of the circuit.

Mentor Graphics Introduction to VHDL, July 1994

4-35

Constructs for Decomposing Design Functionality

If you intend your model to be connected and simulated with other circuitsin a
larger design, it would be best to use architecture behav1. Architecture behavi
is simple and quicker than the other architectures to simulate. If the intent of
the model isto document the actual data flow through the circuit, either df | owl
or a structural representation will be best.

As shown in the examples in this subsection, there are many ways to model the
behavior of one design. Y ou should use concurrent and sequential statements to
best represent the design functionality as you progress through the various
abstraction levels of adesign.

How Values Get Assigned to Signals
and Variables

Just as you must take care to model the correct behavior regarding concurrent
and sequential tasks, you must also consider how signals and variables are
treated during ssimulation. The improper use of signals and variables can cause
simulation results that are different than expected. This subsection shows how
values get assigned to signals and variables during simulation.

Of the three kinds of objects (signals, variables, and constants), signals provide
the interconnection between components, blocks, and processes. Variables and
constants provide containers for values used in the computation of signal
values. For every signal that you declare and assign values, there is aleast one
driver associated with the signal. Each driver holds the projected waveform for
the signal.

The most important thing to remember about variables and signalsisthat a
variable assignment updates the variable value within the current simulation
iteration; a signal assignment causes an event to be scheduled at least one
iteration later (one delta delay*), when the signal then receives the new value.
If asignal assignment contains a delay value more than zero, the event is
scheduled for the appropriate timestep in the future. 1f the signal assignment
specifies azero delay (or if noneis given, zero nanoseconds is the default), the
signal driver does not update the signal value until one iteration after the

*For more information on delta delay concepts, see the Mentor Graphics
VHDL Reference Manual

4-36 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

assignment statement was eval uated.

Consider the code variations in Figure 4-17 of the AOI circuit, whichisused in
the previous subsection. These architectures declare O1, O2, and O3 as signals.
Again the ordering within the process isimportant for the same reasons shown
for architecture behav2 in the previous subsection. Y ou would not expect
behav5 to simulate properly because of the ordering of the signal assignment
statements. However, you might think that behav4 would simulate correctly
because it appears to be ordered correctly.

In addition to the sequential statement ordering, you now also need to be
concerned with how and when the signal values are updated during simulation.
A delay of 0 nsisadded to each signal assignment statement in examples
behav4 and behav5 as areminder that there is some unit of delay (even for a0
ns delay) before the signal receives anew value. Even though the order of
statementsis correct in behav4, this model does not generate simulation results
one might expect.

The signal states during initialization of the behav4 architectureis asfollows:

I NIT. X X X X X
A "B "C "D "E

If at time zero you force al the inputs to 0 you might expect output E to go to
'1’. Thefollowing shows results from a simulator (using aresolution of 0.1 ns
per timestep) for this condition:

Time 0.0 0 0 O O X #END OF Tl MESTEP
A "B "C "D "E

If you step through the behav4 process, you can see why output E did not
changeto’l’. When al the inputs are forced to 'O, the sensitivity list activates
the process in timestep 0.0, iteration 1. The statement

"01 <= A AND B AFTER 0 ns; " executesfirst during iteration 1 and
schedules an event on signal 01 (to changeto 'O’ after O ns). The current value
(initeration 1) of signal O1 is’ X’ as determined during initialization.

Mentor Graphics Introduction to VHDL, July 1994 4-37

Constructs for Decomposing Design Functionality

1 ARCH TECTURE behav4 OF aoi IS 1 ARCH TECTURE behavs OF aoi IS
2 SI GNAL 01, O2, O3: 2 SIGNAL 01, @2, GB:

3 my_qgsi m state; 3 nmy_qgsi m state;
4 BEGQN - - WRONG BEHAVI OR 4 BEGN - - WRONG BEHAVI OR

5 PROCESS (A, B, C, D 5 PROCESS (A, B, C, D

6 BEG N 6 BEA N

7 OL <= A AND B AFTER 0 ns: 7 B <= 0L OR 2 AFTER 0 ns;
8 2 <= C AND D AFTER O ns; 8 OL <= A AND B AFTER O ns;
9 B <= 0L OR 2 AFTER 0 ns; 9 2 <= C AND D AFTER O ns;
10 E <= NOT O3 AFTER 0 ns; 10 E <= NOT 3 AFTER 0 ns;
11 END PROCESS; 11 END PROCESS;

12 END behav4; --WRONG 12 END behav5; --WRONG

Figure 4-17. Changing Model Behavior by Moving Sequential Statements

Statement "2 <= C AND D AFTER 0 ns; " executes next during iteration 1 and
schedules an event on signal 02 (to changeto 'O’ after O ns). The current value (in
iteration 1) of signal @2 isalso’ X’ as determined during initialization.

Statement "8 <= OL OR 2 AFTER 0 ns; " executes next during iteration 1 and
schedules an event on signal G3 (to changeto ' X’ after O ns). The evaluation of this
statement uses the current value (in iteration 1) of signal o1 (X) and &2 (X).

Statement "E <= NOT 8 AFTER 0 ns; " executes next during iteration 1. It
schedules an event on signal E (to changeto’ X’ after 0 ns). The evaluation of this
statement uses the current value (in iteration 1) of signal 3 (X). The last statement
that executes during iteration 1 isthe implied wait statement from the process
sensitivity list.

Now that all statements have executed, the smulator is advanced 0.1 ns and input D
isforcedtoa’l using the Force command. The status of each signal input and out
signal at the end of thistimestep is shown as follows:

Timem 0.1 0 0 O 1 X #END OF Tl MESTEP
"A "B "C "D "E

4-38 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Stepping through the behav4 process, you can again see why output E still did
not changeto’1’ intimestep 0.1. When inputDisforcedto’1’, the sensitivity
list activates the processin timestep 0.1, iteration 1. At the beginning of this
iteration the values stored in each driver for signals 01, @2, O3, and E are placed
on each signal. At the beginning of iteration 1 for timestep 0.1, the complete
status of all the signals are as follows:

Tinre 0.1 0 0 0 1 X O 0 X #AT BEG NNI NG OF
"A "B "C "D "E 7Ol "2 "O3 #| TERATION 1

These signal states were derived from the simulator forces and the events that
were scheduled in iteration 1 of timestep 0.0. Using these values, you can again
step through the sequential statements within the process.

Statement "OL <= A AND B AFTER 0 ns; " executesfirst during iteration 1
and schedules an event on signal 01 (to changeto’'0Q’ after 0 ns). The current
value (initeration 1) of signal 01 is’0’ as determined during the previous
timestep.

Statement "2 <= C AND D AFTER 0 ns; " executes next during iteration 1
and schedules an event on signal @2 (to changeto’ 0’ after 0 ns). The current
value (initeration 1) of signal 2 isalso 'O’ as determined during the previous
timestep.

Statement "8 <= 01 OR 02 AFTER 0 ns; " executes next during iteration 1
and schedules an event on signal @8 (to changeto’Q’ after O ns). The evaluation
of this statement uses the current value (in iteration 1) of signal o1 (0) and Q2
(0). Thecurrent value (initeration 1) of 3 is’X’.

Statement "E <= NOT 8 AFTER 0 ns; " executes next during iteration 1. It
schedules an event on signal E (to changeto’ X’ after 0 ns). The evaluation of
this statement uses the current value (in iteration 1) of signal a3 whichis’X’.
The last statement that executes during iteration 1 isthe implied wait statement
from the process sensitivity list.

Mentor Graphics Introduction to VHDL, July 1994 4-39

Constructs for Decomposing Design Functionality

Using the same procedure as before you can work through the process again for
timestep 0.2 using the following signal conditions:

Tinre 0.2 0 0 1 0 X O 0 0 #BEG NNING OF IT 1
Tinre 0.2 0 0 1 0 1 0 0 0 #END OF TI MESTEP
"A "B "C "D "E ~O1 "2 "8

Y ou can work through the statements in architecture behavs and you will see
that the results are the same as for behav4.

There are two ways to fix the problems encountered in the behav4 example.
One way isto use variablesfor 01, 02, and 03 asin architecture behav?2 in the
previous subsection. Values are assigned to variables within the current
iteration.

Another way to fix the ssimulation problem in architecture behav4 isto make
the process sensitive to changes on signals 01, @2, and G3 as shown in the
following example. This causes the process to execute again within the same
timestep (but during later iterations) when O1, G2, or O3 is scheduled to change
in0ns.

ARCHI TECTURE behav4_fixed OF aoi IS
SIGNAL O1, @2, O3: ny_qgsi m st ate;

BEG N
PROCESS (A, B, C, D, 01, @2,)
BEG N
Ol <= A AND B AFTER 0 ns;
2 <= C AND D AFTER O ns;
B <= 0 OR &2 AFTER 0 ns;
10 E <= NOT O3 AFTER 0 ns;
11 END PROCCESS;
12 END behav4 fi xed;

OCOoO~NOUITRWNPE

Using this revised architecture, follow through the same steps as before. The
signal states during initialization of the behav4_f i xed architectureisas
follows:

I NIT. X X X X X

4-40 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

At time zero all inputsareforcedto’0’. The following shows a simulator result
(using aresolution of 0.1 ns per timestep) for this condition:

Tinre 000 0 0 0 O 1 #END OF TI MESTEP
"A "B "C "D "E

Note that this time the output E changed to’1’ as expected. Asinthebehav4
example, when all theinputs are forced to ' 0’, the sensitivity list activates the
process in timestep 0.0, iteration 1. The four sequential statements execute as
previously described. The last statement in iteration 1 to execute isthe implied
wait statement from the sensitivity list. The implied wait statement is where
architecturesbehav4_fi xed and behav4 behave differently.

The sengitivity list now includes 01, @2, and 08, which have events scheduled to
occur after O ns. Adding these signals means that the process will again trigger
during timestep 0.0 (iteration 2) and the sequential statements are executed a
second time. The results of iteration 2 cause yet another event to schedule after
0 ns (within the current timestep). Because the process is sensitive to the signal
that changed during iteration 2, another iteration is required to finish the
timestep. The complete ssmulation results are shown as follows:

Tinre 000 0 0 0 0 X X X X #BEANNINGOF IT 1

Time 0.0 0 0 0 0 X O 0 X #BEGQA NNING OF I T 2

Time 0.0 0 0 0 0 X O 0 0 #BEG NNING OF | T 3

Timre 0.0 0 0 O O 1 0 0 0 #END OF Tl MESTEP
/\A /\B /\C /\D /\E /\Ol /\& /\CB

From this example you can see that the more efficient way (only one iteration
required) to fix the behav4 architecture isto use variables for 0L through G3
instead of signals within the process as shown in the behav2 architecture.

Mentor Graphics Introduction to VHDL, July 1994 4-41

Constructs for Decomposing Design Functionality

Another example isincluded to show how the use of a signal within aloop can
produce results that were not intended. The following architectures (ar ch_err
and ar ch_ok) useasignal called "t" to hold the integer sum of the contents of
the 10 elements of array "arr_a" (line 12). If each element of arr _a equalsthe
integer value 1, you might expect the sum to equal 10 after the loop in lines 11
through 13 finishes executing for the architecture arch_err ontheleft. For
reasons previously described, t will contain the integer value 1, not 10, after
execution.

1 ARCH TECTURE arch_err 1 ARCH TECTURE arch_ok

2 OF ch_val IS 2 OF ch val IS

3 TYPE ar1l |'S ARRAY 3 TYPE arl | S ARRAY

4 (1 TO 10) OF integer; 4 (1 TO 10) OF integer;
5 SIGNAL t: integer := 0; S SIGNAL t: integer := 0;

6 SIGNAL arr_a : ari; 6 SIGNAL arr_a : arl;

7 7

8 BEG N --1 NCORRECT 8 BEG N - - CORRECT

9 PROCESS (cntrl) 9 PROCESS (cntrl)

10 BEG N 10 VARI ABLE a: integer:= 0
11 FORi IN1 TO 10 LOOP 11 BEG N

12 t <=t + arr_a(i); 12 FORi IN1 TO 10 LOOP

13 END LOOP; B 13 a:=a+arr_a(i);

14 END PROCESS; 14 END LOOP;

15 END arch_err; 15 t <= g

16 END PROCESS;
17 END ar ch_ok;

The sequentia signal assignment in line 12 for architecturear ch_err onthe
left does not update the value of t during each pass through the loop. When
line 12 is executed, the value for t is scheduled to change after O ns. During al
10 passes through the loop, the value for t on the right side of the expression
remains 0.

To correct the behavior, declare a variable (a) to compute and hold the sum
within the loop. Then assign that value (a) to signal t outside the loop as done
inar ch_ok on theright. When simulating architecture ar ch_ok, if each
element of arr _a equalsthe integer value 1, thevaluefor t (line15) is
scheduled to change after O nsto integer value 10.

4-42 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Resolving a Signhal Value When Driven by Multiple
Assignment Statements

Every signal assignment statement assigns a projected waveform to adriver. [t
is possible (and probable in hardware designs) that your model contains more
than one signal assignment statement (each with its own driver) that attempts to
assign different values to the same signal at the same time. When this happens,
your model must provide aresolution function that specifies how to resolve the
assignment.

Each signal that requires a resolution function makes reference to the

appropriate function in the signal declaration. For example, the following

signal declaration refersto aresolution function called "wired_or":
SIGNAL total : wired_or integer ;

For more information on resolution functions, refer to "Multiple Drivers and
Resolution Functions® in the Mentor Graphics VHDL Reference Manual.

Creating Shared Modules--Packages

VHDL provides the package construct to allow you to group a collection of
related items for use by one or more separate modules of code. Among the
items that can be grouped together in packages are:

e Type and subtype declarations o Constants

¢ Subprograms (functions and procedures) e Signals
Figure 4-18 shows how you might use a package in a hardware description.
One package definition is coupled to two separate modules within a hardware
design. Packages directly support the principles of modularity, abstraction, and
information-hiding.
Packages can be compiled and stored separately from the rest of the hardware

description (in adesign file) to facilitate sharing between hardware designs.
Entity declarations and architecture bodies also share this capability. It also

Mentor Graphics Introduction to VHDL, July 1994 4-43

Constructs for Decomposing Design Functionality

makes a hardware design easier to manage if alogical collection of resourcesis
stored separately from the main hardware description. A good example of these
features is with the standard VHDL package called "standard".

Module Defined
as a Package

Figure 4-18. Shared Module of Code Defined as a Package

The package "standard" predefines a number of things consisting of types,
subtypes, and functions. Figure 4-19 shows a portion of the standard package
code (predefined enumeration types and predefined array types). The contents
of the package "standard" are described in the "Predefined Packages' section of
the Mentor Graphics VHDL Reference Manual. Note the type definitions for
bit andbit _vect or that are used in previous code examples. You can create
your own packages to serve asimilar purpose.

4-44 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

PACKAGE standard_portion IS
--predefined enuneration types:
TYPE bit IS ("0, "1");
TYPE boolean IS (false, true);
--predefined array types
TYPE string IS ARRAY (positive RANGE <>) OF character;
TYPE bit_vector IS ARRAY (natural RANGE <>) OF bhit;
END st andard_portion;

Figure 4-19. Portion of Code from a Package Called Standard

Packages can be defined in two parts. a package
_ declaration (also called a package header) and a
Package Declaration | package body. Thistwo part structureis
common to the design entity construction
described on page 2-5. Y ou can create a package
using only a package declaration. The package
body is not required (unless the package header
contains deferred constants or subprogram
declarations). A package declaration can be
stored and compiled in a separate design file
from the package body.

~Package - A package declaration, like that in Figure 4-19,

defines the contents that are visible outside of the
package. The package declaration begins with
the reserved word package as shown in the
following example:

_Package Declaration

| ; package identifier is
R | package_declarative_part
end identifier;

Mentor Graphics Introduction to VHDL, July 1994 4-45

Constructs for Decomposing Design Functionality

~ lpackage | A package body contains program details that are

not visible outside of the package. It beginswith
Package Declaration the reserved words package body as shown in
the following example:

ackage Body package body identifier is
package body declarative part

end identifier;

The package body is not always required.

Anything you declare in a package declaration can be made visible to design
files outside of the package. Y ou must compile the package header before you
compile any code that uses the package. The package body does not need to be
compiled until you are ready to simulate the design that uses the package.

If you want to make a change to a package header after a corresponding entity
declaration or architecture body has been compiled, you must recompile the
package header, package body (if used), entity declaration (if it contains a use
clause for or direct reference to an item in the changed package), and
architecture body. Making a change in the package body does not mean you
have to recompile the package header, entity declaration, and architecture body.
Thisisagood reason to separate the package header and package body into
separate design files. There is more chance that you would make a change to
the code in a package body than modify the declarations in the package header.

To illustrate how this affects the way you model with VHDL, consider the
following example. Figure 4-20 showsaVHDL model of atraffic light
controller that islocated in four design files. The entity declaration (in file
entity) contains alibrary clause and a use clause that makesthe t1c_t ypes
package visible to thet | ¢ entity declaration and associated architecture body.

The package declaration is located in afile called pkg_hdr and the package
body islocated in afile called pkg_body. The architecture body in file archl
contains a procedure call to a procedure that is located in the package.

Before the tlc design is simulated, the files are compiled: first pkg_hdr, second

entity, third archl, and finally pkg_body. If during ssmulation you note that a
change needs to be made in the procedure body (in file pkg_body), only file

4-46 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

pkg_body needs to be recompiled before running the simulation again.

Assume that during the second simulation you decide that the procedure could
better serve the model if an additional parameter is added along with afew
more lines of code. Thistime the procedure specification must be changed in
both the package header (in file pkg_hdr) and the package body (in file
pkg_body). Once these changes are made, all the design files must again be
compiled as before the first simulation. Adding or changing a declaration in the
package header file affects all design units that use that package. They must all

be recompiled.

my_packages

/idea/user/name/sys_1076 _tutorial

tlc_types

proc_decl

pkg_hdr

tic_types

procedure

pkg_body

tic

library
clause behavioral
use_clause of tlc
ENTITY tlc
proc_call
entity archl

Figure 4-20. Effects on Entity and Architecture When Changing
Package Header

Mentor Graphics Introduction to VHDL, July 1994

4-47

Constructs for Decomposing Design Functionality

Making a Package Visible--Library Clause and Use
Clause

To make a package or another design entity visible to the current code
abstraction, you first need to write alibrary clause to identify where the library
containing the given design entity or packageis. Then you need to write ause
clause to make selected declarations in the library visible at the current level of
abstraction.

Figure 4-21 shows two library directories; /idea/user/package lib and
/idea/user/vhdisim_lib. Under the vhdlsim lib directory isadirectory for a
VHDL design entity (and2) and a corresponding package (package?). The
packagel and package? databases are made visible to the and2 design entity by

1. Placing alibrary clause at the head of the design file entity to identify a
logical name for each referenced library.

2. Designating alogical-to-physical map to identify where in the directory
structure the physical library (directory) resides. (Each VHDL
implementation has a specific method for doing this map.)

3. Putting a use clause where the specific package contents are required.

The library clause and use clause have the following format:

library clause library logical_name list;

useclause......cccoceeeueee. use prefix.suffix, prefix.suffix, ... ;

4-48 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

/id
L - - o /;:
package_lib vhdisim_lib
packagel package2
\\ !
| |
| |
‘\;”7]‘,;@9‘ @
\ library 4 ?
. \| clause use_clause
pk_decl & use clause pk_decl
entity archl

Figure 4-21. Making Packages Visible with Library and Use
Clauses

The design file for entity in Figure 4-21 might look like the following:

1 LI BRARY package_lib, vhdlsimlib;--logical |ibrary names
2 USE package_ | i b. packagel. ALL

3

4 ENTITY test IS

5 PORT (a: IN ny_Isimlogic; q : OUT ny_Isimlogic);
6 END test;

To access a package declaration and declarations within the package, you insert

ause clause in the body of a procedure, function, design entity, another
package, etc.

Mentor Graphics Introduction to VHDL, July 1994 4-49

Constructs for Decomposing Design Functionality

To make a package visible at a given abstraction level, you include the logical
library name, followed by the desired package name as the prefix and the
desired internal declaration as the suffix (or all of the internal package
declarations can be called by using the word all as the suffix). Asan example,
look at the following use clause:

USE |ib_stf.ramALL; --use clause to access ram package

This use clause makes all the declarationsin a RAM description package visible
and accessible to a procedure called r am | oad. Figure 4-22 shows how the use
clausesinther am r ead and r am | oad procedures couple them to the RAM
description package.

When compiling code that contains logical referencesto libraries, you must
supply alogical-to-physical map for each library name as determined by the
particular VHDL implementation.

If you needed to access just 2 out of 20 routines from a particular package, it
would be more efficient to make visible just the desired routines, not the whole
package. It would also make your code easier to understand if the use clause
specifically identified which routines you were using from a package.

As an example, assume a package called nrem ops contains 20 procedures and
functions (including those shown in Figure 4-22). Y ou need only r am | oad
andram read. Thefollowing use clause specifiesthelogical library name,
package name, and the particular procedure that you want to make visible:

USE |ib_stf.nmemops.ram.l oad, -- library. package. procedure
[ib_stf.nmemops.ramread; -- library. package. procedure

This use clause makes only the two named procedures visible to your current

level of abstraction. It also makesit clear which operations you are using from
the mem ops package.

4-50 Mentor Graphics Introduction to VHDL, July 1994

Constructs for Decomposing Design Functionality

Memory
Operations

;‘
Qe ¢

g
Mg, e >
Q Use Clauses
Create Coupling

Figure 4-22. Coupling Two Procedures to One Package with Use
Clauses

Mentor Graphics Introduction to VHDL, July 1994 4-51

Global Considerations

Section 5
Global Considerations

This section describes some of the general issues you must consider when
designing and modeling with VHDL. The topicsin this section include the
following:

Scope and Visibility 5-1
Reusing Predefined Names --Overloading 5-6
Overloading Enumeration Literals 5-6
Overloading Subprograms 5-7
Overloading Operators 5-11

Scope and Visibility

When decomposing large hardware descriptions into smaller units (such as
packages, subprograms, processes, and blocks), you must consider each
declaration and how it relates to the whole description. For example, if you
want to declare asignal that is accessed globally throughout the hardware
description, you must position it in the proper location within your code. Y ou
must also be sure that you do not use the same name for a different purpose
elsewhere in your code.

This subsection describes some of the rules you must be aware of that govern
the region of text where a declaration has effect (scope) and which areas of text
adeclaration isvisible (visibility). In general, the scope of a declared identifier
starts at the point where the identifier is first named and extends to the end of
the description unit (subprogram, block, package, process) that contains the
declaration. This concept is best understood by examining the examplein
Figure 5-1.

Figure 5-1 shows an architecture body that contains a procedure within a

process. Inthisexample, asignal and various variables are declared in the three
different text regionsidentified as A, B, and C.

Mentor Graphics Introduction to VHDL, July 1994 5-1

Global Considerations

5-2

The signal declared in the architecture declarative part (fi r st _si g) has a scope
identified by theregion labeled C. Inthisexample, first _si g isdirectly
visibleto all regionswithin region C. Thismeansthat fi r st _si g could be
used in the process called pr ocess1 and the procedure called i nsi de.

The process declarative part in pr ocess1 declares avariable called
process_si g. Thisvariable has a scope identified by region B in Figure 5-1.
Variable process_si g isdirectly visible inside region B but is not visible
outside of thisregion.

A subprogram (the procedure called i nsi de) isalso declared in the pr ocess1
process declarative part. This makes the procedure directly visible to the
process statement part, but declarations within the procedure (such as

procedur e_var) are not directly visiblein region B. Even though the
procedure variable dat a (formal part) is associated with the actual part

i n_dat a in the procedure call, dat a isnot directly visible to region B. Refer to
the "Procedure Call" subsection on page 4-27 and the "Function Call"
subsection on page 4-24 for more information on formal-to-actual part
association.

In the subprogram declarative part for the procedure in Figure 5-1, one variable

isdeclared (pr ocedur e_var). Thisdeclaration isdirectly visible only within
the scope defined by region A.

Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

'ARCHI TECTURE overal | OF test IS

SIGNAL first_sig: bit; ﬁ
BEG N | C.
processl: PROCESS L
‘ VARI ABLE process_sig : bit; 3 ﬁ
. B.

iPROCEDURE i nside (VARI ABLE data : OUT bhit);

'PROCEDURE i nsi de (VARI ABLE data : OUT bit) IS |
| VARI ABLE procedure_var : bit; b

'BEG N

'END i nsi de;

BEGI N
inside (in_data); --procedure call statenent

END PROCESS processi: N Y

 -- part of architecture body
END overal | ;

Figure 5-1. Example of Scope and Visibility

Now that you have examined some of the basic scope and visibility rules, look
at the following features that allow you more visibility control over each
declared item. The remainder of this subsection shows you how to make a
declared variable in region B from Figure 5-1 visible to the architecture
statement part in region C. Also described is how to hide adeclarationin
region C from region B.

Figure 5-2 repeats the example from Figure 5-1 but adds text to demonstrate
how a global declaration (region C) can be hidden from the inner text regions
(regions B and A). Asprevioudy described, thesignal first_si g inthe
architecture declarative part of Figure 5-2 isnormally visibleto all regions
within region C. This signal name is bounded by arectangle to differentiate it
from the variable of the same name which isdefined in process1.

Mentor Graphics Introduction to VHDL, July 1994 5-3

Global Considerations

In Figure 5-2, avariable with the namefi r st _si g isdeclared in the process
declarative part within region B. Thisvariableisbounded by an oval. The
figure uses the square and oval boundaries to help identify which
signal/variable is used in the signal assignment statements within the process
statement part.

Thevariablefi rst _si g inthe process declarative part (bounded by an oval)
andthesignal first_si g inthe architecture declarative part (bounded by a
rectangle) are homographs* of each other. This relationship causes signal
first_siginthearchitecture declarative part to be hidden from inner region
B. Thefirst_si g signa bounded by arectangle is no longer directly visible
throughout region B. Thefi r st _si g variable bounded by an oval takes
precedence within region B.

The signal assignment statement (following the procedure call) in the process
statement part assigns the value of process_si g totheregionBfirst_sig
variable.

*Refer to the Mentor Graphics VHDL Reference Manual for more
information on homographs.

5-4 Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

'ARCHI TECTURE overal | OF test IS
SIGNAL [first_sig: bit; -«—— Thisishidden

from Region B C.

'BEG N |

iprocessl PROCESS

' VARI ABLE pr ocess_sig : bi t ; Y
VAR ABLE(first_sig : bi B

3PROCEDURE i nsi de (VAR ABLE data : OUT bit) IS | |
VARI ABLE procedure_var : bit; Lo

'BEGI N

iEND' i nsi de;

'BEGI N

inside (in_data); -- procedure call statenent
first_sig):= process_sig; .
loverall.first_sig <=(first_sig) AFTER 15 ns;)

END PROCESS processl;

,,,

Figure 5-2. Hiding a Declaration Using a Homograph

The signal assignment statement shows how you can make the signal
first_sig (fromregion C) visible onceit has been hidden from the inner
regions. To specifically access this signal, the architecture body nameis used
asaprefix (over al 1), followed by a period, and then the signal name
(first_sig). Theresult (overal I . first_sig)isshowninFigure5-2
bounded by arectangle because it corresponds with the declaration at the top of
the figure also bounded by arectangle. Thesignal overal | . first_si g takes
on thevalue of variablefi rst _si g after 15 ns.

In this subsection you have seen how to use the same declaration identifier

purposefully in more than one location to perform specific functions.
Overloading is another related topic, which is described in the next subsection.

Mentor Graphics Introduction to VHDL, July 1994 5-5

Global Considerations

Reusing Predefined Names
--Overloading

When creating large design descriptions, you may want to reuse a predefined
identifier for either an enumeration literal or a subprogram (function or
procedure). A particular identifier might clearly state the intended purpose for
more than one function, procedure, or enumeration literal. The VHDL method
to reuse these predefined namesis called overloading. It isalso possibleto
overload operators such as"+", "=", and so on. The following topics describe
overloading for each of these constructs.

Overloading Enumeration Literals

This subsection describes how to overload enumeration literals. The following
example shows how enumeration literalsr ed and gr een are overloaded by
appearing in two separate enumeration definitions in an area of code that has an
overlapping scope.

TYPE wire_col or 1S(green,black,red); --custom enuneration type
TYPE traffic_It 1S(red, yellow green, flashing); --Overl oaded

In this example, it does not make sense to create unique literals because the
overloaded literals specifically describe the intentions for each type declaration.
Once these declarations have been made (repeated in the architecture
declarative part, lines 3 and 4, of Figure 5-3), objects of these types can be
declared (see the process declarative part, lines 9 and 10, of Figure 5-3) and
then values can be assigned (see the process statement part, lines 13 and 14, of
Figure 5-3).

The compiler uses the type of pwr _hot andt op_I t in Figure 5-3 to determine

which literal r ed is assigned to each object. Ambiguity isavoided by using the
context of the statements (pwr _hot := red;)and (top_It := red;).

5-6 Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

1 ARCHI TECTURE physi cal OF hardware | S --architecture

2 SIGNAL sigl: bit; --decl arative part
3 TYPE wire_color IS (green, black, red);

4 TYPE traffic_It 1S (red, yellow, green, flashing);

5

6 BEG N -- architecture statenent part

7 exanpl e : -- process | abel

8 PROCESS (sigl) -- process declarative part
9 VARl ABLE pw _hot, pw _neutral, pw _ground : wre_col or;
10 VARI ABLE top_It, mddle_It, bottomlt : traffic_lt;
11
12 BEGQ N -- process statenent part
13 pw hot :=red ; -- fromtype "wire _color"”
14 top_It :=red ; -- fromtype "traffic_It"

15 END PROCESS exanpl e;
16 END har dwar e;

Figure 5-3. Overloading Enumeration Literals

Overloading Subprograms

As previously mentioned, procedures and functions can also be overloaded. To
illustrate this feature, an example package is shown in Figure 5-4. The related
type declarations are shown at the top of the figure, followed by four
subprogram specifications (functions), each with the same designator
my_to_gsi m 12st ate. Thesearefour unique functions that each have a
similar purpose: to convert agsim valueto agsim 12-state value. The
subprogram body of each function is not shown.

Thefirstt o_ny_gsi m 12st at e function (line 19) receives the value of object

val fromthe calling code. The object val must have avalue of the type

my_qsi m val ue, which isdefined as either ' X’,’0’, or '1’. The next object value
received by thisfunction isst r, which hasatype of ny_qsi m strength
(either’Z’,’R’,’S, or 'I"). Thisfunction returns avalue (to the calling code) of
thetypeny_qsi m 12st at e.

Thesecond ny_t o_gsi m 12st at e function (line 22) looks for avalue of object
val of thetypeny_gsi m st at e, which isdefined aseither ' X’,’0’,’1’, or ' Z'.
This function returns a value (to the calling code) of the type

my_qsi m 12st at e, as does the first function.

Mentor Graphics Introduction to VHDL, July 1994 5-7

Global Considerations

5-8

The third (line 24) and fourth (line 27) functions are the same as the first and
second functions, respectively, except that they expect vectors rather than single
object values.

The compiler determineswhich nmy_t o_gsi m 12st at e function to use by the
context of the calling code. Figure 5-5 shows an example of how to specifically
call thefirst and second function from Figure 5-4. Also included in Figure 5-5
isafunction call that cannot be resolved and that generates an error.

Line 3 of Figure 5-5 makes the package "my_qgsim_logic" visibleto this
process. Theny_lib. prefix isrequired to specify in which library this
packageislocated. A library clauseisrequired (not shown) in the same design
unit as the process to define the logical name for the library where the package
resides.

In the process declarative part of Figure 5-5 (lines 3 through 8), a number of
variables of various types are declared (var 1, var 2, var 3), and values are
assigned to each. One constant is declared (Si g_st r ngt h in line 4) to represent
asignal strength value of "strong". Variablereg_i n_a isdeclared (line 8) to be
of thetypeny_gsi m 12st at e.

Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

(0] b wWNPE

o~

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Mentor Graphics Introduction to VHDL, July 1994

PACKAGE ny_gsimlogic IS
TYPE ny_qgsimstate IS ("X ,’0",’1,"Z);-- X Unknown |ogic |evel
SUBTYPE nmy_qsimvalue IS ny_gsimstate RANGE 'X TO'1 ;

--Leading S: denotes gsim
state
TYPE ny_qgsim 12state | S(SXR, SXZ, SXS,--"2Z": H inped. sig.
strngth
SXl, SOR, SOZ,--"R : Resistive sig. strngth
SOS, S01, S1IR, --Trailing 'S : Strong sig.

strth

S17, S1S, S11);--"17: Indeterm nate sig.
strth
TYPE ny_qgsimstrength IS ("2 ,’R,’S,’'I");

TYPE ny_qgsimstate_vector |S ARRAY(positive RANGE<>) OF

nmy_qsi m st at e;
TYPE nmy_qgsi m val ue_vector 1S ARRAY(natural RANCE <>) OF

my_qgsi mval ue;
TYPE ny_qgsim 12state_vector | S ARRAY(natural RANGE<>)
OF ny_qgsim12state
TYPE ny_qgsi m strengt h_vector IS ARRAY(nat ural RANGE<>)
OF ny_qgsi m strengt h;
FUNCTION ny_to _gsim 12state (val my_qsi m val ue; -- 1.
str : my_qgsi mstrength)
RETURN my_gsi m 12st at €;

FUNCTION nmy_to_gsim12state (val : my_qsimstate) -- 2.
RETURN my_qsi m 12st at e;
FUNCTION nmy_to_gsim12state (val : my_qsi mval ue_vector; -- 3.

str @ my_qsimstrength_vector)
RETURN my_qsi m 12st ate_vect or
FUNCTION ny to gsim 12state (val : ny_gsimstate vector) -- 4.
RETURN mmy_qsi m 12st ate_vector;
END ny_gsi m | ogi c;

Figure 5-4. Overloading Subprograms--Functions

5-9

Global Considerations

Thefirst statement (line 11) in the process statement part of Figure 5-5 assigns
theny _gsimvalue’ 0’ andny_qgsi m strength value’ S tovariable

reg_i n_a by calling functionny_t o_qgsi m 12st at e. Thefunction isrequired
to perform the conversion because it is not possible to assign values of one type
to avariable declared as a different type.

Because the first function call passes avalue of typeny_qsi m val ue anda
value of type ny_gsi m st r engt h, the compiler matches this function call with
thefirst function of Figure 5-4. None of the other functions (lines 24 through
28 of Figure 5-4) matches this function call so the ambiguity of using the same
name for four different functionsis resolved.

1 exanple2: -- process | abel

2 PROCESS (si gl) -- process declarative part

3 USE ny_lib.nmy_qgsimlogic.ALL;

4 CONSTANT Sig_strngth : ny_gsimstrength :="'8;

5 VARI ABLE var1 : ny_gsi mval ue ='0;

6 VARI ABLE var 2 . ny_gsimstate ='7Z;

7 VARI ABLE var 3 © bit =0,

8 VARI ABLE reg _in_a . ny_gsi m12state;

9
10 BEG N -- process statenent part
11 reg_in_a := ny_to_qgsiml2state(varl, Sig_strngth);-- #1
12 reg_in_a := ny_to_qsim12state(var?2); --Uses funct. #2
13 reg_in_a := ny_to_qgsiml2state(var3, Sig strngth); --ERR

14 END PROCESS exanpl e2;

Figure 5-5. Calling a Specific Overloaded Subprogram--Function

The second statement (line 12 of Figure 5-5) assignstheny_qgsi m st at e value
*Z' tothevariablereg_i n_a by calling functionny_t o_gsi m 12st at e again.
In this case, the function call passes only one value of typeny_gsi m st at e, SO
the compiler matches this function call with the second function (line 24) of
Figure 5-4. None of the other functions matches this function call, so again the
ambiguity is resolved.

The third statement (line 13 of Figure 5-5) attemptsto assign thebit value’ 0’
andmy_qsi m strengthvaue’ S tothevariablereg_i n_a by caling
functionny_to_qgsi m 12st at e. If youlook at al four functionsin Figure 5-4,
you will not find any that expect abi t value as an argument. Even though the
value of var 3is’ 0’ , it belongs to atype not recognized by any of the functions

5-10 Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

withthe nameny_t o_qgsi m 12st at e. In thiscase, acompiler cannot resolve
the ambiguity and an error is generated.

Overloading Operators

Any predefined operator can be overloaded. Table 5-1 shows all the predefined
operators by operator class. The operator classes are listed in the order of
precedence from highest precedence (top) to lowest precedence (bottom). All
the predefined operatorsin a given operator class have the same precedence.

Table 5-1. Operators by Precedence

Operator Class | Binary Operators Unary Operators
Miscellaneous | ** abs not
Multiplying * [/ mod rem

Sign + -

Adding +- &

Relational = /= < <= > >=

Logical and or nand nor xor

An operator is overloaded by defining afunction; however, the function format
isdlightly different from the examples shown in the previous subsection on
overloading subprograms. Figure 5-6 shows how the operator "=" is overloaded
in the apackage called "my_qgsim_logic". Notice the symbol "=" (astring
literal) is enclosed by double quotes. \When an operator is overloaded, it must
be enclosed by double quotes.

Mentor Graphics Introduction to VHDL, July 1994 5-11

Global Considerations

PACKAGE ny_gsimlogic IS
TYPE ny_gsimstate IS ("X, "0, "1", 'Z);
FUNCTION "="(I,r: ny_gsimstate) RETURN ny_qsimstate;--1
FUNCTION "="(I,r: ny_gsi mstate) RETURN bool ean; --2
END ny_qgsi m | ogi c;

b wWNPE

Figure 5-6. Overloading Operators

Because the operator "=" is a binary operator (see Table 5-1) it must have two
parameters. The parameter "I" accepts the left primary and the parameter "r"
accepts the right primary when the overloaded operator symbol isused in an
expression. Both parameters are of typeny_qgsi m st at e.

Figure 5-7 shows how one of the overloaded "=" operatorsis chosen from the
context of the calling code. Thevariabler esul t 1 isdeclared to be of type
my_qsi m st at e (line 6). When thefirst expressioninline10 (var1 = var2)
is evaluated and assigned to variabler esul t 1, it must return avalue of type
my_gsi m st at e. Therefore, aVHDL compiler matches the "=" operator with
thefirst function shown in line 3 of Figure 5-6. Variableresul t 1 receivesa
valueof '0'.

The overloaded operator function is called by using the operator notation

(left_parameter = right_parameter). An equivalent function call to the "=
function would look like the following:

resultl := "="(varl, var2),--equivalent function call to "="

The second expression in Figure 5-7 (line 11) expects variabler esul t 2 to
receive a Boolean valuewhen (var 1 = var 2) isevaluated becauseresul t 2 is
declared astype Booleaninline 7. A VHDL compiler matches the "=" operator
with the second function shown in line 4 of Figure 5-6. Variableresul t 2
receivesavaueof 'F . Signalsi g1 inline 16 does not pertain to this discussion
but is required in the process sensitivity list in line 2.

5-12 Mentor Graphics Introduction to VHDL, July 1994

Global Considerations

1 exanpl e3 : -- process | abel

2 PROCESS (sigl) -- process declarative part
3 USE ny_lib.qgsimlogic. ALL;

4 VARI ABLE var1 . ny_gsimstate :="'0

5 VARI ABLE var 2 > ny_qgsimstate := "1

6 VARI ABLE resultl : ny_gsi mstate,;

7 VARI ABLE result2 : bool ean

8

9 BEG N -- process statenment part

10 resultl:= (varl = var2); --Uses funct #1 (resultl ="'0")

11 result2:= (varl = var2); --Uses funct #2 (result2 ="'F)

12 -- (Remai ni ng code shows ot her
13 var 2 ='0; -- possible results.)

14 resultl:= (varl = var2); --Uses funct #1 (resultl ='1")
15 result2:= (varl = var2); --Uses funct #2 (result2 ='T)

16 sigl <= resultl;
17 END PROCESS exanpl e3;

Figure 5-7. Calling a Specific Overloaded Operator

Mentor Graphics Introduction to VHDL, July 1994 5-13

Coding Techniques

Section 6
Coding Techniques

This section presents the following tasks that a modeler might want to
accomplish and certain considerations when modeling with VHDL.:

General VHDL Coding Guidelines 6-1
Various Techniquesfor Modeling Timing 6-5
Embedding Fixed-Delay Parameters Within a Model 6-6
Embedding Variable-Delay Parameters Within a Model 6-6
Using Generics to Parameterize a Model 6-8
Parameterizing Rise/Fall Delays with Generics 6-12
Increasing Model Accuracy with Error Checking 6-17
Modeling for Increased Simulation Performance 6-23
Whento Use VariablesWithinaLoop Instead of Signals _____ 6-23
Using Resolution Functions Only When Needed 6-25
Using Attribute’ event Instead of ' stable When Possible 6-25
Creating Lookup Tablesfor Logic Operations 6-27
Process Statements--Avoiding I nfinite L oops 6-29
Using VHDL for Simulation Stimulus 6-32

General VHDL Coding Guidelines

VHDL provides many constructs for the description of complex hardware
systems. It ishow you use these constructs, that is, your coding style, that
determines the readability of your source code. This subsection presents some
general guidelines that you can use to keep your description of a complex
hardware system readable.

Mentor Graphics Introduction to VHDL, July 1994 6-1

Coding Techniques

The following list summarizes a suggested style of presenting code to improve
readability:

Group logically related declarations and statements. Use blocks to group
concurrent statements. Use packages to group the following:

O Subprograms (functions and procedures)
O Type and subtype declarations
O Signals and constants
¢ Useindentation to show nesting and subordination.
o Use white space (blank lines) to separate logical code divisions.

e Lineup similar words (such as reserved words) or punctuation such as
colons on adjacent lines of code.

¢ Use comments to describe code functions that are not obvious.

o Useal uppercase characters for reserved words and all lowercase
characters for user-defined identifiers.

o Use capitalized words (first character uppercase) for generic and constant
identifiers.

o Usethe optional label (identifier) for processes, concurrent signal
assignment statements, concurrent procedure calls, etc., to give them a
descriptive name.

o Enter code with the reader in mind. Y ou enter code once, but it may be
read and reviewed many times.

Figure 6-1 shows a variation of the shifter example, used earlier in this section,
that uses these coding guidelinesto improve readability. The code has been
divided and grouped into three separate files. This separation gives the added
benefit of being able to compile and maintain each of these files separately.
Packages (my_ gsi m | ogi ¢ and st andar d) are used to group the type

6-2 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

declarations. Indentation shows the subordination. Blank lines help break the
code into visually discernible units.

Wherever possible, text is aligned in columns such, as lines 5 through 8 of the
my_qgsim_logic file and lines 10 through 13 of the shifter _architecturefile.

Comments are used in the examples found throughout this section to help
familiarize you with how to identify basic constructs in real code, such asthe
port clause comment in line 6 of the shifter_entity file. In your code, use
comments to help describe code functionality in areas that are not clear.

Compare the readability of the code in Figure 6-1 with the equivalent code in
Figure 6-2. The codein Figure 6-2 ignores all but one guideline (capitalizing
reserved words). The code may perform as expected, but it is not very easy to
read. If reserved words were not capitalized, it would be almost impossible to
read.

Mentor Graphics Introduction to VHDL, July 1994 6-3

el
NFRPOOWONDUIAWNR

QOWWO~NOOUIEWN P

[
OCOoO~NOUITRWNBE

e e e el
O~NOUIAWNRO

6-4

Coding Techniques

----------- STORED IN FILE ny_gsimlogic--------------------
PACKAGE ny_gsimlogic IS --Following is a portion of gsim.logic

--Leading 'S : denotes gsimstate
TYPE ny_qsim12state | S(SXR, SXZ, SXS, --"Z . H inped. sig. strngth
SXl, SOR, S0Z,--"R : Resistive sig. strength
SOS, SOI, SIR, --Trailing S :Strong sig. strth
S17Z, S1S,S11);--"1":Indeterm nate sig. strth
TYPE ny_qgsim 12state_vector |S ARRAY(natural RANCE <>)
OF nmy_gsi m 12st at e;
END my_qgsi m | ogi c;

------------ STORED IN FILE shifter_entity-------------------
LI BRARY ny_lib; USE ny_lib.my_qsimlogic.ALL;

ENTITY shifter IS
GENERI C(Prop_del ay: tinme); --tine declared in standard package

PORT (shftin : IN my_gsiml2state vector(0 TO 3); --port cl
shftout : OQUT nmy_qgsim12state vector(0 TO 3);
shftctl : IN ny_qgsim12state_vector(0 TO 1));
END shifter

——————————— STORED IN FILE shifter_architecture--------------

ARCHI TECTURE behavl OF shifter IS -- architecture body
BEG N
shift_proc: --process statenent

PROCESS (shftin, shftctl)
VARI ABLE shifted : my_qsim 12state_vector(0 TO 3);

BEA N
CASE shftctl is --process statenent part
VWHEN (S0S, S0S) => shifted := shftin
VWHEN (S0S, S1S) => shifted := shftin(1l TO 3) & SOS;
VWHEN (S1S, S0S) => shifted := S0S & shftin(0 TO 2);
VWHEN (S1S, S1S) => shifted := shftin(0) & shftin(0 TO 2);
END CASE;
shftout <= shifted AFTER Prop_del ay;
END PROCESS shi ft_proc;
END behavi;

Figure 6-1. Good Presentation Style for Shifter Description

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

OCOO~NOUIDWN B

NNNONNNNNRRPRRRRERRRRER
OCUBRWNRFRPOOONOUNWNRO

-------- STORED IN FILE shifter-------------cuomn---

TYPE ny_qgsi m 12state IS (SXR, SXZ, SXS, SXlI , SOR, S0Z, SOS, SOl ,

S1R, S17, S1S, S11)

TYPE ny_qgsim 12state_vector |S ARRAY(natural RANCE <>)
OF ny_qgsi m 12st at €;

ENTITY shifter IS

GENERI C (prop_delay : tine);

PORT (shftin : IN ny_gsimll2state_vector(0 TO 3);

shftout : OUT my_qsim 12state_vector(0 TO 3);

shftctl : IN ny_gsiml2state vector(0 TO 1));
END shifter;

ARCHI TECTURE behavl OF shifter IS

BEG N

PROCESS (shftin, shftctl)

VARI ABLE shifted : ny_qgsim1l2state_vector(0 TO 3);
BEG N

CASE shftctl IS

VWHEN (S0S, S0S) => shifted :
VWHEN (S0S, S1S) => shifted :
VWHEN (S1S, S0S) => shifted :
VWHEN (S1S, S1S) => shifted :
END CASE;

shftout <= shifted AFTER prop_del ay;
END PROCESS;

END behavl;

shftin;

shftin(l TO 3) & SOS;

SO0S & shftin(0 TO 2);
shftin(0) & shftin(0 TO 2);

Figure 6-2. Poor Presentation Style for Shifter Description

Various Techniques for Modeling Timing

VHDL provides a number of alternatives for modeling timing and other
parameters that are dependent on different technologies. Parameters can be
embedded in amodel either as fixed values or variables, or the parameters can be
customized outside the model. These techniques are described in the following
subsections using asimple AND gate example.

Mentor Graphics Introduction to VHDL, July 1994

6-5

Coding Techniques

Embedding Fixed-Delay Parameters Within a Model

If you want amodel that describes one kind of technology, you may choose to
embed delay values within the model. The following example of an AND gate
(and2_gat e) isasimple behaviora model that includes a propagation delay of
8 ns (lines 8 and 10). The behavior of this model might be accurate enough for
use in certain simulations.

1 ENTI TY and2 _gate IS

2 PORT (inO, inl : IN bit;

3 outl : QUT bit);

4 END and2_gat e;

5

6

7 ARCHI TECTURE fi xed_del ay OF and2_gate IS

8 CONSTANT Typi cal _delay : tinme := 8 ns;

9 BEG N
10 outl <= in0 AND i n1 AFTER Typi cal _del ay; --fixed del ay
11 END fi xed_del ay; -- of 8 ns

When dealing with more complicated models, you should declare a constant (as
in line 8) to hold your fixed-delay value. Multiple statements in your model may
use the delay value, but you can modify the value at alater timein just one place
(the constant declaration) of the model. To change the delay value, you have to
edit the file and recompileit.

Embedding Variable-Delay Parameters Within a Model

One step up in complexity (and accuracy) fromthefi xed_del ay architecturein
the previous example involves amodel that has different propagation delays
depending on the state of the output. The following example also embeds the
delay information in the model but adds a variable-delay to the output.

6-6 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

OCOO~NOUITDAWN P

e N
AWNRO

15
16
17
18
19
20
21
22
23
24
25
26
27

LI BRARY ny_lib; --Define Logical library name.

USE ny_lib.logic_exanple.ALL; --Calls package that defines
--nmy_|IsimLOGd C. See Figure 6-15,
ENTI TY and2 _gate IS - - page 6-28.

PORT (inO, inl : IN nmy_IlsimLCdC
outl : QUT ny IsimLOdC);
END and2_gat e;

ARCHI TECTURE vari abl e_del ay OF and2_gate IS
CONSTANT Tpl h_typ: tinme:=
CONSTANT Tphl _typ: tinme:=

BEG N

and_i nputs : PROCESS (in0O, inl)
BEG N
IF (in0O AND inl) = "1 THEN
outl <='1" AFTER Tpl h_typ;
ELSIF (in0O AND inl) ='0" THEN
outl <= '0" AFTER Tphl typ;
ELSIF (Tpl h_typ >= Tphl _typ) THEN
outl <='X AFTER Tpl h_typ;
ELSE
outl <='X AFTER Tphl _typ;
END | F;
END PROCESS and_i nputs;
END vari abl e_del ay;

5 ns; --lowto-high typ.
8 ns; --high-to-lowtyp

del ay
del ay

Figure 6-3. Embedding Variable-Delay Parameters Within Model

Inthevari abl e_del ay architecture, two constants are declared: oneto hold the
delay value of alow-to-high transition (line 11), and one to hold the delay value
of ahigh-to-low transition (line 12). These delay values are used in the process
(and_i nput s) that determine which state has occurred (with if/else conditions)

at the inputs and sets the output accordingly. Wherever the constant Tpl h_t yp is
used, adelay value of 5 ns occurs; similarly, wherever constant Tphl _typ is
used, adelay value of 8 ns occurs.

This model does not actively take into account ' X' (unknown) or *Z’ (high
impedance) states on the inputs. These conditions could be trapped in "if
conditions" and appropriate action taken accordingly.

Mentor Graphics Introduction to VHDL, July 1994

6-7

Coding Techniques

The next example uses generics instead of constants to gather and pass the delay
information to the model architecture.

Using Generics to Parameterize a Model

In this subsection a behavioral model of an AND gate is used to show one way a
model can accept different propagation timing values for the output signal from
outside the model. This technique can be used to pass any parameters such as
load capacitance and temperature

The and2_gat e model is shown in Figure 6-5. The generic clause (line 22)
allows you to parameterize arise and fall time of the out 1 signal with values
from outside the model in either acompiled VHDL test bench file containing a
generic map, shown in Figure 6-4, or by some other implementation-dependent
method.

1 LI BRARY ny_lib; --Define Logical library name.
2 USE ny lib.ny_qsimlogic.ALL;

3 ENTITY test _and2_gate IS

4 END t est _and2_gate;

5

6

7 ARCHI TECTURE test _bench OF test_and2 _gate IS
8 COVPONENT and2

9 CENERIC (Rs, FI : tine);

10 PORT(a, b: IN my_qsiml2state; c: OUT ny_qgsiml1l2state);
11 END COVPONENT;

12

13 FOR al :and2 USE ENTI TY and2_gat e(behav)

14 GENERI C MAP (Rs, Fl)

15 PORT MAP (a, b, c¢);

16 SIGNAL x, vy, z : ny_gsiml12state;

17 BEG N

18 al: and2

19 GENERI C MAP (7 ns, 10 ns);
20 PORT MAP (X ,y, 2);
21 . . . ~--The code here can exercise the AND gate.
22 END t est bench;

Figure 6-4. Test Bed Code for AND Gate Model

6-8 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

After theand2_gat e model is compiled, thet est _and2_gat e model can be
compiled. At that time the values from the VHDL test bench file are passed into
theand2_gat e VHDL model as shown in Figure 6-6. In this example, the Rs
valueissetto 7 nsand theFl valueisset to 10 ns(line 19 of thet est _bed
architecture in Figure 6-4). Where the and2_gat e moded in Figure 6-5 uses
out1_rs (lines 32, 36, and 37), thevalue 7 nsisinserted. Similarly, where

out1 fl isusedintheand2_gat e mode (lines 35, 36, and 39 in Figure 6-5), the
Fl value of 10 nsisinserted.

Asshown in line 22 of Figure 6-5, you can set default values for the generic
parameters. The default takes affect if there is no value associated with the
signal from outside the and2_gat e model. Default binding also occurs by other
ways when certain conditions are met.

Mentor Graphics Introduction to VHDL, July 1994 6-9

OCOO~NOUIDAWN P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Coding Techniques

PACKAGE ny_gsimlogic IS --Package defines gsim12state
--and function gqsimstate from(),
--whi ch returns gsi mstate val ue.
TYPE ny_qgsimstate IS ("X ,’0,’1",72Z2);--X Unknown |ogic |evel
SUBTYPE ny_gsimvalue IS gsimstate RANGE 'X TO'1l ;
--Leading S: denotes gsimstate
TYPE ny_qgsim 12state | S(SXR, SXZ, SXS,--Z: H inped. sig. strngth
SXl, SOR, SOZ, --R Resistive sig. strngth
SOS, SO, SIR, --Trailing S: Strong sig. strth
S17, S1S,S11);--1: Indetermnate sig. strth
-- CONVERSI ON TABLE
FUNCTION ny_gsimstate from(val: ny_gsiml2state)-- State Result
RETURN nmy_gsi m state; --S0S, SOR, 0
--S81S, SI1R "
--S0I, S1I, SXS, SXR, SXI 'X
--SXz, S0z, S1z ' Z
END my_qgsimlogic; --PACKAGE BODY NOT SHOMN HERE

USE ny_gsi m | ogi c. ALL;
ENTI TY and2_gate IS
GENERIC (Qutl rs, Qutl fl: time := 0 ns);
PORT (inO, inl : IN my_qsim12state;
outl : QUT ny_qgsim12state);
END and2_gat e;

ARCHI TECTURE behave OF and2 gate IS
BEG N
and_i nputs : PROCESS (in0O, inl)
BEG N
[F((my_gsimstate_from(in0) AND ny_qsimstate from(inl))="1")
THEN outl <= S1S AFTER Qut1_rs;
ELSIF ((ny_gsi mstate_from(i nO) AND
my_qgsimstate_from(inl)) =0")
THEN out1 <= SO0S AFTER Qut1 fl;
ELSIF (Qutl rs >= Qutl fl) THEN
outl <= SXS AFTER Qut1l_rs;

ELSE
outl <= SXS AFTER Qut1 fl;
END | F;
END PROCESS and_i nput s;
END behave;

Figure 6-5. AND Gate Model Using Generics to Receive Timing Parameters

6-10

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

Figure 6-6. Using Generics to Pass Customized Parameters to a Model

Mentor Graphics Introduction to VHDL, July 1994 6-11

Coding Techniques

Parameterizing Rise/Fall Delays with Generics

The example in Figure 6-7 shows the entity declaration (interface) for a one-bit
latch description that includes parameterized rise and fall delays. Therise and
fall delay values are set in arelated VHDL test bench file. The values from the
compiled test bench model are passed into the latch model through generics. The
latch code in Figure 6-7 reserves space for error checking code that is added and
described in the following subsection.

Unlike the previous and2_gat e design entity in Figure 6-5, the rise/fall delay
valuesfor thel at ch design entity are treated in the VHDL model as strings.
Lines 17 through 20 of Figure 6-7 define the generic rise/fall constants that are
passed into the model. Each of the rise/fall constantsis declared as a string and
given adefault valueof "0, 0, 0". If thel at ch model isinstantiated in
another model without a generic map to set the corresponding propagation delay
values, the default values are used. This string assumes the first number is the
minimum delay, the second number is the typical delay, and the third number is
the maximum delay (in nanoseconds). Line 21 receives the timing mode
information.

A function called "my_gsim_get_time" is declared in package
"my_qgsim_extended" (not shown), which chooses the appropriate delay value
from each generic constant string based on which timing parameter is chosen
(m n, max, or t yp). To choose the correct string, atype is aso defined in the
"my_qgsim_extended" package (ti mi ng_t ype) and has avalue set of ni n
(minimum), t yp (typical), or max (maximum). Y ou assign one of the following
values. i n, t yp, or max to Ti m ng_node in ageneric map in atest bench file or
other implementation-dependent method. Line 2 in Figure 6-7 callsthe

my_qsi m ext ended package to make theny_qgsi m get _ti me function and the
ti mi ng_node typevisibleto thel at ch design entity. Lines 28 through 32 in
Figure 6-7 also describethe ny _gsi m get _ti me function.

Figure 6-8 illustrates how a string is passed to the | at ch design entity for each
rise and fall value on the enable and data signals. Once the strings are passed to
the model, the appropriate value (i n, t yp, or max) from each string must be
selected and converted to type time.

6-12 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

1 USE ny_lib.my_qgsimlogic.ALL; --This package defines gsimstate.

2 USE ny_lib. my_qgsi m extended. ALL; -- Thi s package defi nes

3 --my_qsimget _time function and

4 --type timng_type

5 ENTITY latch IS

6 --This line reserved (error check code)

7 --This line reserved (error check code)

8 --This line reserved (error check code)

9 --Data_rise = Prop. Delay lowto-high fromdata to g_out
10 --Data_fall = Prop. Delay high-to-low fromdata to q_out
11 --Enable rise = Prop. Delay |owto-high fromenable to g_out
12 --Enable_fall = Prop. Delay high-to-low fromenable to g_out
13 --Enable fall = Prop. Delay high-to-low fromenable to g_out
14 GENERI C (--This line reserved (error check code)
15 --This line reserved (error check code)
16 --This line reserved (error check code)
17 CONSTANT Data_ri se . string := "0, 0, O"

18 CONSTANT Dat a_fal | : string := "0, 0, O"

19 CONSTANT Enable rise : string := "0, 0, O"

20 CONSTANT Enable fall : string := "0, 0, 0"

21 CONSTANT Tim ng_node : timng_type :=typ);

22 --Each string is ordered as mn, typ, and max tinme val ues.
23 --Each string assumes val ues in nanoseconds.

24

25 PORT (enable, data : IN ny_gsimstate

26 g_out : QUT ny_gsimstate);

27

28 -- ny_gsimaget _tinme function fromny_qgsi m extended package

29 -- accepts two paraneters:

30 -- 1 Astring of characters that is converted to a tine val ue
31 -- 2 Constant "Timng_node", which is declared in test_bed
32 -- nodel and set to a value of either mn, typ, or max

33

34 CONSTANT Data_tplh : time := ny_qsimaget _tinme(Data_ri se,

35 Ti mi ng_node) ;
36 CONSTANT Data_tphl : time := nmy_qsimget _tinme(Data_fall

37 Ti mi ng_node) ;
38 CONSTANT Enable tplh: tine := ny_qgsimaget tinme(Enable_ rise,
39 Ti m ng_node) ;
40 CONSTANT Enabl e tphl: time := ny_qsimaget tinme(Enable fall,
41 Ti m ng_node) ;
42 BEG N

43 - 58 . . . --These lines reserved (error check code)

59 END | atch;

Figure 6-7. Entity for One-Bit Latch Using Parameterized Rise/Fall Delays

Mentor Graphics Introduction to VHDL, July 1994 6-13

Coding Techniques

Figure 6-8. Rise/Fall Values Passed to One-Bit Latch Model

Four constantsin Figure 6-7, declared in lines 34 through 41, correspond with
the four generic constantsin lines 17 through 20. The constantsin lines 34
through 41 hold the actual propagation delay values used in the architecture of
the model. Each of these are declared as type time and set to a specific value
determined by the function ny_gsi m get _ti me. Thefunction and its
parameters are described in the code comments in lines 28 through 32.

In this example, generic constant Dat a_r i se (line 17 of Figure 6-7) receives
string "8,16,30" as shown in Figure 6-8. This vaue comes from the fourth
parameter in the generic map of line 25 in the test bench model of Figure 6-9.
The eighth parameter in the generic map (Figure 6-9, line 26) setsthe

Ti mi ng_node constant (Figure 6-7, line 21) tot yp. The function call in line 34
of Figure 6-7 passes the string "8,16,30" and constant Ti ni ng_node (whichis

6-14 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

settotyp) to function ny_gsi m get _ti ne. Inthiscase, the function returns the
time value 16 ns and assigns it to constant Dat a_t pl h (Figure 6-7, line 34). The
constant timing values are used throughout the behav1 architecture body shown
in Figure 6-10. The other rise/fall parameters are also set in thisway.

1 LI BRARY ny_lib; --Define Logical library name.
2 USE nmy_lib. ny_qgsi m| ogic. ALL;
3 USE ny_lib.my_qgsi mextended. ALL; --Declares timng_type as
4 --TYPE timng type IS (mn, typ, nmax);
5 ENTITY test latch IS
6 END test | atch
7
8 ARCH TECTURE test _bed OF test latch IS
9 COVPONENT | at chl
10 CENERI C (En_wi dth, Da_setup, Da _hold ©otime;
11 Da_rise, Da_fall, En_rise, En_fall: string;
12 Ti me_node: timng_type);
13 PORT (da, en: INmy_qgsimstate; qo: OUT ny_qgsimstate);
14 END COVPONENT,;
15
16 FOR L1 :latchl USE ENTITY | at ch(behavl)
17 CENERI C MAP (En_wi dth, Da_setup, Da_hol d,
18 Da rise, Da fall,
19 En_rise, En_fall, Tinme_node);
20 PORT MAP (da, en, qo);
21 SI GNAL data, enable, g_out : ny_qgsimstate;
22 BEG N
23 L1: latchl
24 GENERI C MAP(20 ns, 20 ns, 5 ns, --This |line supports
25 "8,16,30", "7,14,25", --timng chks
26 "8,16, 30", "5,7,15", typ);
27 PORT MAP (data, enable, g_out);
28 . . . ~--The code here can exercise the Latch.
29 END t est bed;

Figure 6-9. Test Bed Code for Latch Model

Mentor Graphics Introduction to VHDL, July 1994 6-15

Coding Techniques

OCOO~NOUIDAWN P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

ARCHI TECTURE behavl OF latch IS

BEG N

PROCESS (enabl e, data)
BEG N
IF enabl e’ event THEN -- -----mmmmmm e e e m e e e o -
| F enable = *1" THEN - - Behavi or when enable is '1’
|F data = '1' THEN
g_out <= data AFTER Enabl e_tplh
ELSIF data = ' 0° THEN
g_out <= data AFTER Enabl e_t phl
ELSI F Enabl e_tpl h >= Enabl e_t phl THEN
g_out <= 'X AFTER Enable tplh

ELSE
g_out <= 'X AFTER Enabl e_t phl
END | F; --End Behavi or when enable is '1’

ELSIF enable /= '0" THEN --Behavi or when enable is 'X or 'Z
| F enabl e_tpl h >= Enabl e_t phl THEN
g_out <= ’'X AFTER Enable tplh
ELSE
g_out <= 'X AFTER Enabl e_t phl
END | F; --End Behavi or when enable is 'X or 'Z
END | F;
ELSE -- No event on enable ----------mmmmmmmm e
| F enabl e 1" THEN -- Model behavi or when enable is "1’
|F data = '1' THEN
g_out <= data AFTER Data_t pl h;
ELSIF data = '0' THEN
g_out <= data AFTER Dat a_t phl;
ELSIF Data_tplh >= Data_tphl THEN
g_out <= 'X AFTER Data_tpl h;

ELSE
g_out <= 'X AFTER Data_tphl;
END | F;
END | F; --End Behavi or when enable is '1’
END | F;
END behavl;

Figure 6-10. Architecture Body for One-Bit Latch with Parameterized Delays

6-16

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

Increasing Model Accuracy with Error
Checking

The previous example of the one-bit latch in Figure 6-7 is used here to show one
way to add hold and setup violation checks to your ssmulation models. As
before, generics are used to pass data into the VHDL model.

In this example the latch test bench model associated with the latch model
assumes the values shown in Table 6-1 (set in lines 24 through 26 in Figure 6-9).
The values added to the latch for the setup and hold checks in this example are
Setup, Hold, and Width.

Table 6-1. Constant Values Set in Latch Test Bed Model

Constant Type Value
Enable rise string 8,16,30
Enable fall string 57,15
Enable width time 20 ns
Data rise string 8,16,30
Data fall string 7,14,25
Data setup time 20 ns
Data_hold time 5ns

Figure 6-11 shows the lines that are added to the code in Figure 6-7 to handle a
pulse-width check for the enable signal, a check of the data-to-enable setup time,
and a check of the data-from-enable hold time.

Lines 14 through 16 in Figure 6-11 show the generic constant declarations which
receive the information from outside the model during simulation. Each of these
constants are set to a default time value of 0 nsif there is no associated data from
outside the model. When the latch model isinstantiated in either atest bench
model or another design entity and contains the values listed in Table 6-1, the
associated VHDL model assigns the proper values to the constants.

Mentor Graphics Introduction to VHDL, July 1994 6-17

Coding Techniques

6 --Enable_width = Wdth of enabl e pul se
7 --Data_setup = Setup Tine
8 --Data_hol d = Hold Tine
14 GENERI C (CONSTANT Enable_width : tine = 0 ns ;
15 CONSTANT Dat a_set up Cotime = 0 ns ;
16 CONSTANT Dat a_hol d cotime = 0 ns ;
B e i
44 chk_wi dth: ASSERT (enable = '1') OR (enable delayed = "0") OR
45 (enabl e’ del ayed’ | ast _event >= Enabl e_w dt h)
46 REPORT "Enabl e signal has insufficient pulse width."
47 SEVERI TY error;
B e i
49 chk_setup: ASSERT (enabl e stable) OR (enable /="0") OR
50 (data’l ast _event >= Data_setup)
51 REPORT "Dat a-to-enable setup tinme violation."
52 SEVERI TY error;
R I e i e
54 chk_hol d: ASSERT (data stable) OR (enable /= "0")
55 (enabl e’ | ast _event >= Dat a_hol d)
56 REPORT "Data-fromenable hold tine violation."
57 SEVERI TY error;
Y I e i

59 END | at ch;

Figure 6-11. Error-Checking Code Added to Entity for One-Bit Latch

6-18 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

The error checks are performed with three concurrent assertion statements within
the entity statement part (lines 43 through 58). The purpose of each assertion
statement isto report atiming violation during simulation.

Thefirst error check (lines 43 through 47) evaluates the width of the enable
pulse. With apulsewidth (enabl e_wi dt h) value of 20 ns, the assertion
statement generates an error if the enable pulseisnot at a’1’ valuefor at least 20
ns. Two predefined attributes are used to determine if the enable pulse width is
within specification: ' delayedand ’'last_event

In Figure 6-11, the first conditionin line 44 (enabl e = * 1') is ORed with two
other conditions. All three conditions must be false before the assertion
statement issues the report in line 46. If the conditionenabl e = * 1’ istrue, the
report is not issued.

To understand the other two conditionsin lines 44 and 45, you must understand
how ’delayedt and ’last_eventoperate in asimulator environment. Figure 6-12
shows two positive enable pulses: one that fails the pul se-width check and issues
the report (16 ns wide), and one that passes the pulse-width check and does not
issue the report (20 nswide). This example assumes that the constant

Enabl e_wi dt h equals 20 ns. The figure showstwo signals. enabl e and

enabl e’ del ayed. Each simulator event (from E1 through E8) isindicated on
the figure at the appropriate signal transition. Each event shown causes the
assertion statement conditions to evaluate.

When the predefined attribute ' delayed is appended to theenabl e signal with no
time delay value specified, anew signal is created, as shown in Figure 6-12 by
enabl e’ del ayed. Thisnew enabl e’ del ayed signal is delayed from the
origina enabl e by O ns. Even though O nsisthe delay time (called adelta
delay), the simulator still provides one iteration of delay to the enabl e’ del ayed
signal. Thisisan important concept to understand when using a0 nsdelay.

The condition (enabl e’ del ayed’ | ast _event >= enabl e_wi dt h) inline45
does the actual pulse-width check. The predefined attribute ' last_event returns
the elapsed time since the last event occurred on the associated signal. At event
E3 (30.0 ns, iteration 1), enabl e’ | ast _event returnsavalue of O ns.

*Also refer to the Mentor Graphics VHDL Reference Manual, the "Signal
Attributes' subsection.

Mentor Graphics Introduction to VHDL, July 1994 6-19

Coding Techniques

enable El E3

enable’delayed

20 ns 16 ns

E2 E4 E6 ES

| | |

| | |
0 10 20 30 40 50 60 70 80 90
nanoseconds

30.0 ns, iteration 1 ------ L 30.0 ns, iteration 2

Figure 6-12. Comparing a Signal with Its Delayed Counterpart

The elapsed time since the last event at timestep "30.0 ns* (E3) for the enable
signa isOns. Thisiswhy the’last_event attribute is applied to the delayed
version of the enabl e signal inline 45. If the’last_event attribute is applied to
the enabl e signal instead of the delayed version of the enabl e signal, the

el apsed time between events E3 and E1 is not returned at event E3.

At event E3, (when the enabl e signal changestoa’Q’) theenabl e’ del ayed
signal has not yet changed state (no event). Therefore, when the ’last_event

6-20

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

attribute is applied to the delayed version of the enabl e signal at event E3, a
result of 20 nsisreturned. (The last timestep where enabl e’ del ayed changed
state was 10.0 ns, iteration 2.) At event E3, the condition in line 45 is true and
the report is not issued. If the result of the condition in line 45 isfalse* (along
with the other two conditionsin line 44), the assertion statement issues the report
inline 46.

The second condition (enabl e’ del ayed = ’ 0’) inline44 isrequired to prevent
the enabl e’ del ayed signal from triggering the assertion statement report.
When enabl e’ del ayed is’0’, such as at event E4, the assertion statement will
not issue the report because all three conditions have to be false.

In Figure 6-11, lines 49 through 52 (repeated below) check the setup time of the
latch.

49 chk_setup: ASSERT (enable’ stable) OR (enable /="0") OR

50 (data’ | ast _event >= Data_set up)
51 REPORT "Dat a-to-enable setup tinme violation."
52 SEVERI TY error

Thechk_set up assertion statement also has three conditions that must evaluate
to aBoolean FAL SE value before the report in line 51 is generated. Figure 6-13
shows the waveforms and parameters that relate to the hold and setup checks.
The setup check relates to the events labeled E1 and E3 in the figure.

This example assumes that constant Dat a_set up is set to avalue of 20 ns. The
first conditionin line 49 (enabl e’ st abl e) produces a FAL SE value whenever
there is an event on the enable signal in the current simulator iteration. The
predefined attribute ’ stable with no time value specified produces a Boolean
value of TRUE if there has been no event on asignal in the current simulator
iteration. Thiscondition in line 49 is necessary to trigger the assertion statement
checking whenever the enable signal changes state.

The second condition in line 49 (enabl e /= ' 0’) causes the assertion statement
to look for a setup error when enabl e is’0’ (notat’1’,'X’, or ’Z"). Thethird
condition in line 50 performs the actual setup violation check. The expression
dat a’ | ast _event returnsatime value that designates the elapsed simulator

*The result of the condition in line 45 (Figure 6-11) isfalse at the event
labeled E7 in Figure 6-12.

Mentor Graphics Introduction to VHDL, July 1994 6-21

Coding Techniques

time since dat a last changed. If the returned valueis less than or equal to 20 ns
in this example, a setup violation has occurred. The setup time in Figure 6-13
(from event E1 to E3) iswithin the 20 ns specification and will not generate an
error report.

Data_setup Data_hold Data_hold
25 ns 5ns 3ns

Figure 6-13. Setup/Hold Timing for Latch

The chk_hol d assertion statement in lines 54 through 57 is similar to the
chk_set up assertion statement in lines 49 through 52.

54 chk_hold: ASSERT (data'stable) OR (enable /="'0") OR

55 (enabl e’ | ast _event >= Data_hol d)
56 REPORT "Dat a-from enable hold tine violation."
57 SEVERI TY error;

Thechk_hol d assertion statement has three conditions that all must evaluate to
FALSE before the report isissued. Thefirst condition (dat a’ st abl e) causes
the assertion statement to "look™ at the other two conditions only when there is
an event on dat a.

The second condition (enabl e /=’ 0’) causes the assertion statement to
perform the hold check only when enabl e is’0’ (not’1,’X’, or’Z’’). Thethird
condition (enabl e’ | ast _event >= Dat a_hol d) performsthe hold check. If
the first two conditions are fal se, then this statement determines whether the
report will be sent. Assuming that constant Dat a_hol d has avalue of 5 ns, the

6-22 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

result of the third condition applied to event E4 in Figure 6-13 would be true and
no error would be reported. However, the result for the third condition at event
E8 would be false and an error would be reported.

Modeling for Increased Simulation
Performance

Because VHDL contains many constructs to cover a wide range of modeling
problems, there will be times that you are faced with multiple ways to model a
given task. Given two or more ways of modeling a given task, you may decide
that maximum simulation performance isyour goal. This subsection describes
some considerations regarding performance for some of the tasks that can be
modeled in more than one way.

When to Use Variables Within a Loop Instead of
Signals

The following paragraphs describe when a variable assignment within aloop is
more efficient during simulation than a signal assignment.

For every signal assignment statement that appears in a simulation model, a
gueue of projected waveforms for each signal must be maintained by the
simulator. Signal assignments do not cause the simulator to assign a new value
to the signal immediately (within the current iteration). Signal assignments
encountered during simulation cause a simulator to keep alist of projected values
for future times (either afuture simulator iteration or future simulator timesteps).
For more information on this principle, refer to "How Vaues Get Assigned to
Signals and Variables' on page 4-36.

The architecture a1 on the left of Figure 6-14 shows one way to use asignal

(si g1 inline 14) to find and store the maximum integer value from a 64-element
array. The signal assignment statement is executed (as determined by the if
condition in line 13), and an event is scheduled after O nsevery timeavalueis
found in one of the array elements that is greater than the value stored in the max
variable. Putting the signal assignment statement inside the loop (lines 12 to 17)
causes the ssimulator to operate on the si g1 queue up to 64 times. Every timethe
simulator updates the si g1 queue, moretimeisrequired for the simulation run.

Mentor Graphics Introduction to VHDL, July 1994 6-23

Coding Techniques

OCOO~NOUIDAWN P

PRRRRRRRERE R
©CONOUIRAWNRO

ARCHI TECTURE al OF en IS
TYPE var _arr | S ARRAY
(1 TO 64) OF integer;

SI GNAL sigl i nt eger;
BEG N --Inefficient
PROCESS (cntrl)
VARI ABLE max : i nteger;
VARI ABLE var var_arr;
BEG N
FOR elmt IN 1 TO 64 LOOP

| F var (el mt) >nmax THEN
sigl <= var(elmt);
max = var(elmt);
END | F;
END LOOP;
END PROCESS;
END al;

©CoOoO~NOUAWNPE

ARCHI TECTURE a2 COF en IS
TYPE var _arr |S ARRAY

(1 TO 64) OF integer;

SI GNAL sigl i nt eger;

BEGE N --More Efficient
PROCESS (cntrl)

VARI ABLE nmax : i nteger;
VARI ABLE var var_arr;
BEG N
FOR elmt IN 1 TO 64 LOOP
| F var (el mt) >nax THEN
max = var(elmt);
END | F;
END LOOP;
sigl <= max;
END PROCESS;
END aZ2;

Figure 6-14. Signal Assignment Within a Loop

In Figure 6-14, architecture a2 on the right provides the same basic function as
architectureal. The signal assignment has been moved outside the loop (line 17).
The variable max keeps track of the highest integer value encountered (line 14) and is
assigned to si g1 only once during the process (lines 7 through 18). This causes the
simulator to schedule an event for si g1 just once instead of up to 64 times, a method
which decreases the time it takes to simulate this version of the model.

6-24

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

Using Resolution Functions Only When Needed

Y our VHDL models will most likely contain more than one signal assignment
statement (each with its own driver) that assigns different values to the same
signal at the same time. When this happens, your model must provide a

resol ution function that specifies how to resolve the assignment. For each signal
that is declared as aresolved signal, the associated resolution function is called
whenever asignal assignment is executed.

For example, if you have two signals declared as type bit, you might declare
them on the same line as shown below on the left. If signal s1 requiresa
resolution function, you must add the resolution function name (wi r ed_or inthis
example) to the signal declaration. If signal s2 does not require aresolution
function, the declaration should be separated from the s1 signal declaration as
shown on the right.

1 SIGNAL s1,s2:wired_or bit; 1 SIGNAL s1: wired_or bit;
2 SI GNAL s2: bit;

For amore efficient ssmulation model, use a resolution function only when
necessary. For more information on resolution functions, refer to the Mentor
Graphics VHDL Reference Manual subsection titled "Multiple Drivers and
Resolution Functions."

Using Attribute 'event Instead of 'stable When
Possible

The basic rule to follow when coding isto check if there is a construct or

attribute that specifically performs the required modeling task, and use that
construct instead of one that is more general. For example, if you require atest
condition to check if asignal has an event scheduled during the current simulator
timestep, you can use either the attribute ’ event or the attribute ' stable. Aswill be
shown, "event is preferred over 'stable for this particular case if maximum
simulation performance is desired.

Mentor Graphics Introduction to VHDL, July 1994 6-25

Coding Techniques

Consider the following code examples:

| F (sig stable = fal se) THEN IF (sig event = true) THEN
- - sonet hi ng happens - - sonet hi ng happens
END I'F; END | F;

The if condition in both examples (on the left and the right) is true whenever si g
is scheduled to change state in the current simulator timestep. The major
difference between these examplesis the amount of work the ssmulator must
perform when evaluating the attributes. Attribute ’stable takes more work to
evaluate than ’event.

Attribute ' event returns a Boolean value TRUE whenever the associated signal is
scheduled to change value in the current ssimulator timestep. Attribute ’ stable(t)
returns a Boolean value TRUE if the associated signal has been stable for the
specified time (t). If notimeis specified, such asin the previous example on the
left, the attribute ' stable returns the value TRUE as long as the associated signal
remains stable.

The attribute ' stable is more general and has more information to process than
attribute’ event. For this reason, you should use the more specific attribute ' event
for conditions shown in the previous example to make your model more efficient
during simulation.

For a comparison of these attributes with other signal attribute, refer to the

Mentor Graphics VHDL Reference Manual subsection titled "Signal Attribute
Example.”

6-26 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

Creating Lookup Tables for Logic
Operations

A lookup table is an efficient way to define and reference Boolean and logic
operations. Thetableis created as a constant, which is defined as an array with
two or more dimensions. In the following example, afunction is declared, which
uses alookup table to implement an AND logic function for signals defined as
type my_Issim_LOGIC.

In Figure 6-15, the function AND is defined to accept two my _Issim_LOGIC
inputs, a and b, and returnamy_Issm_LOGIC value (line 3). A typeisdeclared
(a2_I ookup inlines 11 through 14) to form the array template for declaring the
constant. The array istwo dimensional; each dimension consists of four
elements. Theindicesrangefrom’Q’ to’Z’ asdefined inthemy_Isim_LOGIC
type declaration.

The constant is declared in lines 15 through 20 astype a2_I| ookup. Each array
element holds a particular my_Issm_LOGIC value that corresponds to the AND
logic function on the two corresponding index values. The a and b inputs
provide the x and y index for the array. Line 23 returns the appropriate array
element value to the code that called the function. An example of the calling
code could be as follows:

sig3 <= "AND'(sigl,sig2); --sig3=0if sigl=1 AND sig2=0

Because the function AND is defined as an overloaded operator, the following line
performs the same function as the previous line:

Sig3 <= sigl AND sig2; --sig3=0if sigl=1 AND sig2=0

Mentor Graphics Introduction to VHDL, July 1994 6-27

OCOO~NOUIDAWN P

NNNNNNNRRRRRRERRRRE
UOBRWNRPOOONOURAWNRO

6-28

Coding Techniques

PACKAGE | ogi c_example IS
TYPE ny_IsimLOGdCIS ("0, "1, 'X, 'Z2);

FUNCTI ON "AND" (a, b

IN my_|IsimLOd Q)

RETURN nmy_| sim LOG C,

END | ogi c_exanpl e;

PACKAGE BODY | ogic_exanple IS

FUNCTI ON "AND" (a, b

IN my_|simLOd Q)

RETURN nmy IsimLOG C IS
TYPE a2_| ookup IS ARRAY
(my_IsimLOAC ('0") TOny_IsimLOGC ('2Z2),
ny_lsimLOAC ('0) TOny_IsimLOAC ('Z))

CONSTANT Qutput : a2_l ookup :

~— N
~— - - -

-- 0 1 X Z
(co, "o, 0", ’0
co, "1, 'X, 'X
(o, 'xX, 'X, 'X
(o, 'x, X, X
BEG N

RETURN CQut put (a, b);
END " AND";
END | ogi c_exanpl e;

OF ny_IsimLOd C

N X~ O

Figure 6-15. Logic Example Package

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

Process Statements--Avoiding Infinite
Loops

When using process statements, you should be aware that you could create an
undesired infinite loop condition during simulation.

Once a process is executed during simulation, it is always active (it never stops).
Each process may contain one or more sequential statements that continue to
execute without advancing simulation time until a condition is encountered that
suspends the sequence. If you do not provide a condition in your code that will
suspend the execution, the sequential statements will loop forever.

Compilers can help check for some infinite loop conditionsin processes. An
infinite loop occurs during simulation if a process statement does not contain any
of the following:

e A sengitivity list (which has an implied wait statement at the end of the
process)

e A wait statement

e A procedure call statement that calls a procedure containing await
Statement

A compiler can generate an error or warning if no sensitivity list, wait statement,
or procedure call is present within aprocess. A compiler can generate awarning
(not an error) if no sengitivity list or wait statement is present, but the process
does contain a procedure call. Y ou must have await statement in the procedure
to avoid an infinite loop. A VHDL compiler cannot determine whether await
statement should be in a procedure that is called from a process, so only a
warning can be issued. A compiler warning helps make you aware that a
possible infinite loop exists in your code.

In Figure 6-16, the code at the left shows an error condition that could be caught
at compile time because two processes (P1 and P2) satisfy the infinite loop
condition (no sengitivity list, no wait statement, and no procedure call). The code
at theright of Figure 6-16 is the same code but with additional text (lines 11 and
20) to correct the infinite loop condition.

Mentor Graphics Introduction to VHDL, July 1994 6-29

Coding Techniques

OCOO~NOUITA,WN P

NRPRRPRRRRRRRR
CQOWONOUDMWNEREO

21

ARCHI TECTURE behav3 OF
aoi IS
SI GNAL O1, O2, CB:
ny_| simI ogi c;

BEG N
Ol <= A AND B;
2 <= C AND b

P1l: -- ERROR CONDI Tl ON
PROCESS -- Infinite Loop
BEG N

B <= 01 OR @;
END PROCESS;

P2: -- ERROR CONDI TI ON
PROCESS -- Infinite Loop
BEG N
E <= NOT GB;
END PROCESS;
END behav3;

OCOO~NOOOUIA,WN PP

ARCHI TECTURE behav3 OF

aoi IS
SI GNAL O1, 2, CB:
ny_I| si m| ogi c;

BEG N

OlL <= A AND B;
2 <= C AND D

P1: --Good code includes

PROCESS (01, 2) --sens.

BEG N --1ist.
B <= 01 OR ;

END PROCESS;

P2: --Good code incl udes
PROCESS- - wai t st at enent
BEGQ N

E <= NOTI B;

WAI T ON C8;
END PROCESS;

END behav3;

Figure 6-16. Correcting an Infinite Loop in a Process Statement

In Figure 6-17, the code at the left contains a process that uses a procedure call
(pr ocedur el inline 15) and does not use a sensitivity list or await statement. A
compiler can generate awarning (not an error) when this code is compiled.

The package at the right of Figure 6-17 contains the procedure (pr ocedur el)
called from the processin the code at the left of the figure. In this example an
infinite loop is avoided because the called procedure contains a wait statement
that halts the execution of sequential statements within the process.

6-30

Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

1 LIBRARY contai ns_package; 1 PACKAGE pkg_at_rt IS
2 USE pkg_at _right.ALL; 2 --procedurel Decl arati on-
3 3 PROCEDURE procedurel (
4 ENTI TY expl 1S 4 VARI ABLE frst: QUT bit;
5 PORT (sigl : INDbit); 5 VARI ABLE scnd: IN bit);
6 END expl ; 6 e
7 7 END pkg_at _rt;
8 8
9 ARCH TECTURE behav OF expl 9 PACKAGE BODY pkg_at_rt IS
10 'S 10 --procedurel --Body---
11 BEG N 11 PROCEDURE procedurel (
12 PROCESS 12 VARI ABLE frst: OUT bit;
13 VARI ABLE varl : bit; 13 VARI ABLE scnd: I N bit)
14 BEG N 14 'S
15 --somet hi ng happens here 15 BEG N
16 procedurel(varl, sigl); 16 frst := NOT scnd;
17 END PROCESS; 17 VAI T FOR 10 ns;
18 END behav: 18 END pr ocedurel;

(K R

20 END pkg_at _rt;

Figure 6-17. Wait Statement in a Procedure Avoids an Infinite Loop

Mentor Graphics Introduction to VHDL, July 1994 6-31

Coding Techniques

Using VHDL for Simulation Stimulus

Depending on the VHDL environment, there can be a number of ways to provide
simulation stimulus for your VHDL models. Oneway isto useaVHDL test
bench model. The example in Figure 6-18 provides stimulus for a two-input
AND gate that uses the my_gsim_12state type.

The model in Figure 6-18 is completely contained in one design file to make it
simple to move around your system or store in the library with the model to be
tested. The model includes comments that provide brief instructions on how the
model should be used to test atwo-input AND gate.

The entity declaration does not define any interface to the test bench model.
Internal signalsx andy are declared (line 16) to map to the inputs of the AND
gate, and internal signal z maps to the output of the AND gate.

Within the architecture body (lines 7 through 38), the two concurrent statements
(lines 22 through 33 and lines 35 through 37) force the outputs of the stimulus
model (the inputs of the AND gate to which the outputs are mapped). All you
need to do from the simulator isto run the simulation for about 150 ns. Y ou can
then check the simulation results against the logic table provided in the stimulus
code and against the AND gate model delay parameters. This example does not
test all the input conditions possible using the 12-state type my_qgsim_12state.
Only the states with a"strong" strength aretested. The'Z’ stateis also ignored.

6-32 Mentor Graphics Introduction to VHDL, July 1994

Coding Techniques

QOWO~NOOUIEWN B

38

LI BRARY ny_l i b;

--Define Logical

USE ny_lib.my_qgsimlogic.ALL;
ENTITY test _and2_gate IS

END t est _and2_gate;

i brary nane.

ARCHI TECTURE test_bed OF test_and2 _gate IS

COVPONENT and2
GENERI C (Rs, FI
PORT (a, b:

ny_qgsiml2state);

END COMPONENT;

time);

I'N n&_qsinL12state;

c:

aur

FOR al :and2 USE ENTITY and2_gat e(behav)
GENERI C MAP (Rs, Fl)

PORT MAP (a, b,
SIGNAL x, vy, z :
BEG N
al: and2

c)

ny_qsi m 12st at e;

GENERI C MAP (7 ns,

PORT MAP (X ,V,

X <= S0S AFTER
S1S AFTER
SXS AFTER
SO0S AFTER
S1S AFTER
SXS AFTER
S0S AFTER
S1S AFTER
SXS AFTER
SOS AFTER
S1S AFTER

y <= S0S AFTER
S1S AFTER
SXS AFTER

END t est bed;

Figure 6-18. VHDL Model Used as Stimulus for AND Gate

z);

10
20
30
40
50
60
70
80
90
100
110

40
70
130

10 ns);

ns, --
ns, --
ns, --
ns, --
ns, --
ns, --
ns, --
ns, --
ns, --
ns, -
ns, -

ns, -
ns, -
ns; -

Mentor Graphics Introduction to VHDL, July 1994

Abbrevi ated Directions:
Compi | e this nodel .

| nvoke si nul at or

on this nodel
Run t he simul at or
150 ns.

f or

follow ng logic table

\
t2

Check the results agai nst

\
I
I
I
I

outl
X 0 1 Z
X 0 X X
0 0 0 0
X 0 1 X
X 0 X X

6-33

Glossary

Glossary

abstract literal
An abstract literal is one of two types of a numeric literal. (The other numeric
literal isaphysical literal). An abstract literal is either an integer litera (such as
0, 16€2, and 1_024) or ared litera (such as 0.0, 24.0, and 66.33e-9). (Also refer
to literal).

abstraction
Abstraction is a coding principle that groups details (in amodule) describing the
function of adesign unit but does not describe how the design unit is
implemented. This principleis closely related to modularity.

actual
An actual isaport, signal, variable, or expression that is associated with a
corresponding formal.

actual port
Refer to port.

adding operators
The adding operators consist of the"+", "-", and "&" operators. The predefined
adding operator "+" has the conventional "addition" definition. The operator "-"
has the conventional "minus” or "subtraction” definition. The operator "&"
performs a concatenation operation on the left and right operand.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-1

Glossary

aggregate
An aggregate is the combination of one or more values into a composite value of
an array. The following example shows the four-bit wide array variable
mem | oad assigned four distinct bit values (line 5) to produce a composite value
of 1010:

PROCESS (si gl)

TYPE mend 1S ARRAY (0 to 3) OF bit;

VARl ABLE nem | oad : nemy,

BEG N

memload := ("1, "0, "1, '0"); -- aggr. is in paren’s
END PROCESS;

OO WNE

allocator
An alocator is an expression that, when evaluated, creates an anonymous object
and yields an access value that designates that object. The access value can be
thought of as the address of the object. The access value may be assigned to an
access-type variable, which then becomes a designator of (hereafter called a
pointer to) the unnamed object. Such pointers allow access to structures like
FIFOs (first in, first out registers) and linked lists that contain unnamed el ements
for which storage is dynamically alocated. For additional information, refer to
the Mentor Graphics VHDL Reference Manual, in the "Allocators" subsection.

anonymous types
An anonymous type is created implicitly and has no name to reference within
code. Numeric types (such as integer and floating point types) have an implied
base type that are anonymous. Because the base type is not explicitly named,
you cannot refer directly to the anonymous base type. The base type of an array
is also anonymous.

architecture body
An architecture body isaVHDL construct that describes the relationships
between the design entity inputs and outputs. In the architecture body, the design
entity behavior, data-flow, or structure is described.

Glossary-2 Mentor Graphics Introduction to VHDL, July 1994

Glossary

array types
An array typeisaform of acomposite type. Objectsthat are declared as an array
type contain a collection of elementsthat are of the sametype. An array type
definition is either constrained or unconstrained. (Also refer to
constrained array definition and unconstrained array definition). For example,
the following array definition creates atemplate (declared astypet est _array)
for objects which contain four el ements that each have avalue of typei nt eger :

TYPE test_array IS ARRAY(0 TO 3) OF integer;--constr. array

ascending
A range, suchas0 TO 3, isconsidered an ascending range.

ASCII
ASCII isan acronym for American Standard Code for Information Interchange.
The predefined package called "standard" contains a definition of type
char act er , which represents the ASCI| character set.

assertion violation
This term describes when a condition in an assertion statement evaluates to false.

association list
An association list provides the mapping between formal or local generics, ports,
or subprogram parameter names and local or actual names or expressions.

attribute
An attribute defines a particular characteristic of anamed item. The kinds of
attributes are function, range, signal, type, and value. These five attribute kinds
operate on the following kinds of items: array, block, signal (scalar or
composite), or type (scalar, composite, or file). A number of predefined
attributes are provided with VHDL.

base type
Every type and subtype declaration has a base type. Consider the following type
declarations:

TYPE volume 1S (height, wi dth, depth);
SUBTYPE area |S vol une RANGE hei ght TO w dt h;

Mentor Graphics Introduction to VHDL, July 1994 Glossary-3

Glossary

For the ar ea subtype declaration, the base typeisvol ume. Inthevol une type
declaration, the base type isitself (vol une).

Backus-Naur
Thisterm refers to a semi-algebraic notation for documenting the syntax of a
programming language. Graphical syntax diagrams are used in Appendix A of
the Mentor Graphics VHDL Reference Manual to convey syntax information in
addition to the Backus-Naur format used throughout that manual. (Also refer to
the "BNF Syntax Description Method" subsection in the Mentor Graphics VHDL
Reference Manual).

behavioral description
The VHDL method that allows you to describe the function of a hardware design
in terms of circuit and signal response to various stimulus. The hardware
behavior is described agorithmically without showing how it is structurally
implemented.

binding indication
Binding indication is alanguage construct used within a configuration
specification to associate (bind) the component instance to an entity declaration.

block
A block isasmaller unit of an overall design. A design entity isamajor unit at
the top of adesign hierarchy. A design entity is considered an external block.
Within a design entity, functionality can be decomposed into smaller units (with
the VHDL block statement). The block statement defines internal blocks.
Blocks defined within blocks indicate the design hierarchy.

box
The symbol <> (box) is used in an index subtype definition to denote an
undefined range. The phrase RANGE <> (range box) in the following type
declaration indicates that the ar r 2 index can range over any interval allowed in
theindex subtypei nt eger :

TYPE ar2 1S ARRAY(i nteger RANGE <>) OF marr; --unconst. arr.

Glossary-4 Mentor Graphics Introduction to VHDL, July 1994

Glossary

bus
The reserved word busis used in asignal declaration so you can control the
assignment of avalueto asignal. Signalsthat are declared as a bus re-evaluate
the output value when all drivers are disconnected. (Also refer to guarded signal
and register).

character literal
A character literal isasingle ASCII symbol enclosed in single quotes ('). These
characters are case-sensitive. The character 'Z’ does not equal the character 'Z'.
A character literal isone type used in an enumeration literal. (Also refer to
enumeration literal).

comment
Comments are used within VHDL code to document areas or lines of code that
may not be clear to the reader. Comments are phrases or sentences that start with
adouble dash (--) symbol. Any text appearing between the double dash and the
end of alineisignored by the compiler. Descriptive comments make the code
easier to read.

compiler
A VHDL compiler is aprogram that checks the source code for proper syntax
and semantics, displays any errors encountered, and (once you correct any errors)
translates the source code into a simulator-compatible database (called the object
code).

complete context
The term complete context is used in conjunction with overload resolution. A
complete context is either a statement, specification, or declaration. When the
compiler sets out to resolve an overloaded name, it looks for exactly one
interpretation of each part of the innermost complete context. (Also refer to
overloading and overload resolution).

component
A VHDL component is the basic unit of a structural description. Components
allow you to declare adevice and instantiate it within a design entity’s
architecture body without needing to specify the actual architecture of the
device.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-5

Glossary

component binding
Component binding is the method used to interconnect components using three
kinds of ports: formal, local, and actual. (Also refer to port).

composite type
A composite type specifies groups of values under asingle identifier. One
composite typeis an array type, which allows you to group items that are
naturally represented as atable or are logically bundled together. Another
composite typeis arecord type.

concatenation
Concatenation is the process of combining two or more smaller elementsinto a
larger element. For example, you can combine two string literalsto form one
larger string. Also, two smaller arrays can be concatenated to form alarger
array. The ampersand (&) is used to indicate a concatenation.

concurrent statements
Concurrent statements define interconnected processes and blocks that together
describe adesign’s overall behavior or structure. A concurrent statement
executes asynchronously with respect to other concurrent statements,

configuration declaration
A configuration declaration provides a mechanism for deferring the binding of a
component instance in a given block to a specific design entity, which describes
how each component operates.

configuration specification
A configuration specification binds a component instance to a specific design
entity, that describes how each component operates.

constant
A constant is one type of VHDL object. (Signals and variables are also objects.)
The value of aconstant is set in a declaration and cannot be changed in a
statement. (Also refer to deferred constant).

Glossary-6 Mentor Graphics Introduction to VHDL, July 1994

Glossary

constrained array definition
A constrained array is an array that has a defined range of the array indices such
as(1 TO 25) inthefollowing example:

TYPE int_array IS ARRAY(1 TO 25) OF integer;--constr. arr.

constraint
A constraint (index or range) defines avalue subset of a given type.

construct
A language construct is one of the many building blocks of VHDL. Each
construct is an item that is constructed from basic items such as reserved words
or other language building blocks.

data-flow
Data-flow isthe VHDL description method, which is similar to register-transfer
languages. This method describes the function of adesign by defining the flow
of information from one input or register to another output or register.

declaration
A declaration is code you write to introduce items (such as types, objects, and
entities) to a certain scope of the hardware model. Y ou provide aname for each
declaration, which can be referenced throughout the scope of the model that is
visible to the declaration.

default expression
A default expression is an expression that supplies a default value in signal
declarations, interface constant declarations, interface variable declarations, or
interface signal declarations. The default value is used during initialization of
the ssmulator, or when asignal is left unconnected or the interface object is left
unassociated.

deferred constant
A deferred constant is specified if you do not use an expression after the ":="
delimiter in aconstant declaration. A deferred constant allows you to declare a
constant but not to specify the value immediately. Deferred constants can only
appear in package declarations and must have a constant declaration in the
package body. The following example shows a deferred constant declaration and
the corresponding full constant declaration:

Mentor Graphics Introduction to VHDL, July 1994 Glossary-7

Glossary

PACKAGE conmon_info IS
CONSTANT Xtal value : real; -- deferred constant
END common_i nf o;

PACKAGE BODY common_info IS
CONSTANT Xtal value : real := 1.556E6; --full constant

delta delay
The term delta delay refersto avery small amount of time (greater than zero but
less than one timestep of the ssimulator). When a signal assignment is specified
with zero delay (the default), the simulator makes the assignment after a delta
delay unit. You can think of one delta delay as one iteration in the simulation
environment. (Also refer to iteration).

design entity
Design entity isthe primary abstraction level of a VHDL hardware model. The
design entity represents a cell, chip, board, or subsystem. A VHDL design entity
is composed of two main parts. an entity declaration and an architecture body.

design file
A design file contains source code for one or more design units. (Also refer to
design unit).

design library
Refer to library.

design unit
A design unit is a portion of the hardware description (model) that can be
contained and compiled in a separate design file. A design unit contains a
context clause (library clause and/or use clause) and alibrary unit. The
following are library units: entity declarations, configuration declarations,
architecture bodies, package declarations, and package bodies. The ability to
store design units in separate files allows you to modularize a design description
by compiling each entity or package declaration separate from the corresponding
body. Thisability isaso useful so packages can be shared by multiple entities.

Glossary-8 Mentor Graphics Introduction to VHDL, July 1994

Glossary

discrete array
A discrete array is aone-dimensional array that contains elements that are
enumeration or integer types.

driver
A driver contains the projected output waveform for asignal. Y ou use the signal
assignment statement to change the value of the projected output waveforms that
areinthedriver for asignal. Thevalue of asignal isrelated to the current values
of itsdrivers.

entity
Refer to design entity.

entity declaration
Entity declaration is alanguage construct that defines the interface between the
design entity and the environment outside of the design entity. The entity
declaration begins with the reserved word entity.

entity header
Entity header is alanguage construct that declares the interface for the design
entity (using ports and generics), which enables it to communicate with other
items in the design environment.

enumeration literal
An enumeration literal is used in an enumeration type definition to declare
specific values composed of an identifier(s) or character literal(s). The following
type declaration defines atype called ny_qgsi m st at e to have valuesof 'X’,’'0’,
'1',and’Z’:

TYPE ny_qsimstate IS ("X ,’0,’1","2Z); --Uses 4 char. lit.

errors
Y ou can encounter two kinds of errors when using aVVHDL implementation:
compile-time and run-time. Errors encountered when running the compiler are
called compile-time errors. The compiler checks the source code for proper
syntax and semantics and displays any errors encountered. Errors encountered
while simulating aVHDL model are called run-time errors.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-9

Glossary

event
In model simulation, event refersto achangein asignal value.

execute
To execute means to carry out the instructions and/or evaluate the algorithms
described in an explicit or implied VHDL process.

expression
An expression is a mathematical formulathat, when evaluated, computes avalue
or set of values.

external block
Refer to block.

formal
A formal isageneric or port of adesign entity or a parameter of a subprogram.

formal port
Refer to port.

format effector
A format effector is a non-printable control character you use to format the text
in your source file. There are five format effectorsused in VHDL. The
following list showsthe VHDL format effectors:

o Tab e Linefeed
e Vertica tab e Form feed
o Carriagereturn
function
A function is one kind of subprogram. (Refer to subprogram). A function has
the following characteristics: it produces no side-effects; it accepts only input

(in) parameters; it returns just one value; and it always uses the reserved word
return.

Glossary-10 Mentor Graphics Introduction to VHDL, July 1994

Glossary

generic
A generic isachannel for static information to be passed from an environment to
an internal or external block. A generic alows you to reuse a single design entity
by passing in constants such as delays, temperature, and capacitance. With each
different use of the design entity, different values can be supplied for the
constants.

globally static expression
A globally static expression is an expression that can be evaluated when the
design hierarchy where the expression appearsis elaborated. The valuesfor
globally static expressions may depend upon declarations that appear in other
design units. The values for globally static expressions are determined when the
design unit is elaborated.

guard
Refer to guard expression.

guard expression
A guard expression is a mathematical formulathat evaluates to a boolean value
that is used to control the operation of certain statements within ablock. When a
guard expression is evaluated and found to be true, all guarded assignments
within the block are executed. If the guard expression isfalse, the guarded
assignments do not execute. (Also refer to guarded assigment).

guarded assignment
A guarded assignment is a concurrent signal assignment statement that uses the
optional reserved word guarded. The statement does not execute unless the
associated guard expression evaluates to a true condition.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-11

Glossary

guarded signal
A guarded signal allows you to control the assignment of signal values. The
guard is aboolean expression. If the Boolean expression is FALSE, the guard
assigns a null transaction to the drivers of the guarded signal, which turns off the
drivers. If the value of the guard is TRUE, the signal assignment is made.
Guarded signals must have resolution functions if they are a bus or register.
There are two methods for guarding signals.

e Specifying register or bus asthe signal kind in asignal declaration.
e Specifying guarded in a concurrent signal assignment.

hidden declaration
A hidden declaration is a declaration that can not be seen within a given scope.
With homographs in different scopes, the inner declaration hides the
corresponding outer declaration within the inner scope region. If ahomograph
exists, then one of the declarationsis not visible. Homographs within the same
scope create an error. (Also refer to homograph).

homograph
A homograph isapair of declarations that have a special relationship to each
other. Two declarations are homographs of each other if they both use a
common identifier and overloading is allowed for at most one of the two
declarations. There are two homograph cases. one declaration can be
overloaded and the other cannot; or both declarations can be overloaded and they
have the same parameter and result type profile. Only enumeration literals or
subprogram declarations can be overloaded.

index constraint
Anindex constraint is used with constrained arrays to specify a subset of values
for the range of the array indicessuch as(1 TO 25) inthe following example:

TYPE int _array IS ARRAY (1 TO 25) OF integer; --constr. arr.

Glossary-12 Mentor Graphics Introduction to VHDL, July 1994

Glossary

inertial (delay)
Inertial delay refersto atype of delay used in VHDL signal assignments. If the
reserved word transport is not used in the right-hand side of asignal
assignment, a default inertial delay for the waveform isassumed. An inertial
delay applied to a waveform indicates that pulses with a width shorter than the
specified delay time will not be transmitted to the target.

information hiding
Information hiding is a coding principle that means certain information from a
module of code is hidden from other modules. This principle helps make VHDL
designs manageable and easier to read. When coding a particular hardware
module, it may be desirable to hide the implementation details from other
modules. This principle complements abstraction, which extracts the functional
detailsin agiven module. By hiding implementation details from other modules,
adesigner’s attention is focused on the relevant information, while the irrelevant
details are made inaccessible.

iteration
An iteration isasimulator time unit that is greater than zero but |ess than one
timestep. A timestep is the smallest time increment in the ssimulator. Iterations
are used because the simulator is actually a serial processor that must process
concurrent hardware events. All concurrent processes are evaluated in the same
timestep as far as the simulation is concerned, but multiple iterations may be
required to evaluate the concurrent processes completely.

iteration scheme
An iteration schemeisaVHDL construct used within aloop statement to control
the execution of aloop.

iterative statements
Iterative statements include the loop statement, next statement, and the exit
statement. These iterative statements allow you to write code that can repeatedly
execute a sequence of statements.

language construct
Refer to construct.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-13

Glossary

lexical element
Lexical elements are the items used to form the VHDL language. A lexica
element is one of the following: an identifier (or areserved word), acomment, a
literal (numeric, character, or string), or adelimiter.

library
VHDL libraries are classified into two groups. working libraries and resource
libraries. The working library isthe library in which the compiled design unit is
placed. The analogy to the working library is your working directory. When you
compile the design unit, it exists in the working directory in which you
performed the compilation. Thereisonly one working library during the
compilation of a design unit.

Theresource library isalibrary that is referenced within the design unit when it
iscompiled. There can be any number of resource libraries for agiven design
unit. Theworking library itself can be aresource library.

literal
A literal isalexical element such as a number, character, or string that represents
themselves. For example, the numbers "1064" represents a decimal literal for
integer one thousand, sixty-four.

local
A local isaspecia name for ageneric or port in a component declaration.

locally static expression
A locally static expression is an expression that can be completely evaluated
when the design unit in which it appearsis evaluated. The valuesfor locally
static expressions depend only on those declarations that are local to the design
unit or on any packages used by the design unit. For more information, refer to
the Mentor Graphics VHDL Reference Manual in the " Static Expressions’
subsection.

local port
Refer to port.

Glossary-14 Mentor Graphics Introduction to VHDL, July 1994

Glossary

mode
This VHDL construct is optionally used in an interface declaration to specify

which direction that information flows through an object’s channel of
communication. The mode is designated with one of the following reserved

words;

in: The interface object can only be read.

out: The interface object value can be updated but not read.

inout: Theinterface object can be read and updated by O or more
SOUrces.

buffer: Theinterface object can be read and updated by, at most, one
source.

linkage: The interface object can be read and updated only by appearing
as an actual corresponding to an interface object of linkage
mode.

modularity
Modularity isacoding principle that refers to the partitioning (or decomposing)
of ahardware design and associated VHDL description into smaller units.

named notation
(Also called named association.) An association is considered named when an

association element explicitly matches the actual part with aformal part. For
example, the formal parametersin the following procedure (lines 1 and 2) are
explicitly associated with a corresponding actual part in the function call in line
3. The association in line 3 uses the named notation. (Also refer to

positional notation).

1 PROCEDURE i nteger _4bit (CONSTANT i _in - INinteger;
2 SIGNAL i3, i2, i1, i0: QUT ny_gsimstate);
3 integer_4bit(i_in => count, i3 => qd, i2 => qc,
4 il =>qgb, i0 => qa),
named

Each declared item must have aname. Names formally designate one of the
following: explicitly or implicitly declared items, subelements of composite

items, or attributes.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-15

Glossary

objects
Objects are the containers for values of a specified type. Objects are either
signals, variables, or constants. Object values are used and manipulated with a

set of operators or subprograms.

object code
Object code is the simulator-compatibl e database generated by the VHDL

compiler from the VHDL source code. Users cannot directly modify object code
with an editor. Object code is modified by changing the source code contents

and then recompiling.

overloading
Overloading is the term that describes the process of using the same name for

two or more different enumeration literals or subprograms (functions or
procedures) within the same scope. The following example shows how
enumeration literalsr ed and gr een are overloaded by appearing in two separate
enumeration definitions in an area of code that has an overlapping scope:

TYPE wire color |IS (red, black, green); --customenum type
TYPE traffic_light IS (yellowred,green,flashing); --Ovrload

overload resolution
Overload resolution is the method used by a VVHDL compiler to determine the
actual meaning of an overloaded enumeration literal or subprogram (function or
procedure) name. Using the type declarations (wi re_col or and
traffic_light)fromthe overloaded definitions, a compiler uses the overload
resolution method to determine that the enumeration literal r ed in the following
example actually refersto the onein thewi re_col or declaration:

SIGNAL pos: wire_color; --Declare sig. of type wire_col or

pos :=red; --Uses "red" fromwre_color type declaration

Glossary-16 Mentor Graphics Introduction to VHDL, July 1994

Glossary

package
A package consists of the VHDL package declaration and package body
constructs to allow you to group a collection of related items for use by one or
more separate modules of code. Among the items that can be grouped together
in packages are: type and subtype declarations, subprograms (functions and
procedures), constants, and signals. Packages can be compiled and stored
separately from the rest of the hardware description (in adesign file) to facilitate
sharing between hardware designs.

passive process
The term passive process describes one kind of process that can appear in a
VHDL model. A processis called apassive processif no signal assignment
statement appearsin a process or a procedure called by the process. A passive
process can appear in the entity statement part of adesign entity. (Also refer to
persistent process).

persistent process
Persistent processis a process that, once executed, exists forever. Y ou use the
process statement to define a process, which is used to contain a series of
sequential actions that execute during simulation. (Also refer to passive process).

port
A port is the channel for signal input/output communications between an internal
or external block and the environment. Three possible configuration modes for
portsarein, inout, out, buffer, and linkage. There are three kinds of ports:

e Formal ports. These are specified in the entity declaration.

e Local ports. These are specified in the component declaration.

e Actual ports. These ports, within acomponent instantiation statement, map to
the local ports of the component declaration with the reserved

words port map. Actual portsin an instance can be connected
to formal ports by using the configuration specification.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-17

Glossary

positional notation
(Also called positional association.) Positional notation is one way to associate
an actual port to a corresponding formal port. When an association element does
not explicitly specify which actual port matches a corresponding formal port, the
association is made by the position of each element (positional association). For
example, the order of elementsin line 3 of the following example causes count
(in the procedure call) to associate with 1 _i n (in the procedure of line 1). They
are both the first element. The second element in the procedure call (qd)
associates with the second element in the procedure (i 3). This positional
association continues until all actual partsin the procedure call are associated
with a corresponding formal part in the procedure.

1 PROCEDURE integer_4bit (CONSTANT | _in : IN integer;

2 SIGNAL 13, i2, il, i0: OQUT ny_gsimstate);

3 i nteger_4bit (count, gd, gc, gb, ga) ; -- positional not.
primary

A primary (also known as an operand) is a quantity on which an operator
performs an operation within an expression.

procedure
A procedure is one kind of subprogram. (Refer to subprogram). A procedure has
the following characteristics. it can produce side-effects; it does not have to
return any value or can return multiple values; it does not require the reserved
word return; and it accepts input (in), output (out), input/output (inout), buffer,
and linkage parameters.

process
Refer to passive process and persistent process.

register
The reserved word register in asignal declaration allows you to control the
assignment of avalueto resolved signal. Signalsthat are declared as aregister,
retain the last output value when all drivers are disconnected. (Also refer to

guarded signal and bus).

record type
A record type is a composite type whose values consist of named elements.

Glossary-18 Mentor Graphics Introduction to VHDL, July 1994

Glossary

reserved words
A reserved word is one that has specific meaning to a VHDL compiler, such as
theword port. Certain characters, such asthe left and right parentheses and the
semicolon, are also classified as reserved words.

resolution function
A resolution function is a user-defined subprogram that determines what single
value asignal should have when there are multiple driversfor that signal. Every
signal you define that is the target of asignal assignment has adriver. If the
signal has more than one driver (is atarget for more than one signal assignment
statement), you need to define a resolution function. The resolution function is
called every time the signal is active.

resolved signal
A resolved signal isasignal with an associated resolution function.

resource library
Refer to library.

RLL
RLL (rotate left logical) is one of the System-1076 predefined multiplying
operators. The left operand type is aone-dimensional array of any type or any
integer type. The right operand is a non-negative value of any integer type.

RRL
RRL (rotate right logical) is one of the System-1076 predefined multiplying
operators. The left operand type is aone-dimensional array of any type or any
integer type. The right operand is a non-negative value of any integer type.

scope
Scope is the region of code where a declaration has effect. The scope of a
declared identifier starts at the point where the identifier is first named and
extends to the end of the description unit (subprogram, block, package, process)
that contains the declaration.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-19

Glossary

semantics
Semantics are the rules that determine the meaning of the VHDL constructs as

they are used in a hardware description. The following example shows a line of
code (line 4) that has the correct syntax but incorrect semantics. A signal
declared to be of type integer cannot be assigned to asignal of type
my_qsim_state. The compiler checks for both semantic errors and syntax errors
and displays an error message when arule has been violated. (Also refer to

syntax).

1 SIGNAL sigl : integer;

2 SIGNAL sig2 : ny_qgsimstate;

3 Ce

4 sig2 <= sigl; -- Syntax correct, Semantics incorrect.
separators

Separators and delimiters are characters that divide and establish the boundaries
of lexical elements. When you put lexical elements together, sometimes you
must use a separator between the elements. Otherwise, the adjacent lexical
elements could be construed as being a single element. There are three lexical

separators.:

e Space character. Except when the space isin acomment, string or character
literal.

o Format effector. Except when the format effector isin a comment or string
literal.

e End of line. Consists of the line feed character.

sequential statements
Sequential statements represent hardware algorithms that define the behavior of a

design. You use sequential statementsin a process or a subprogram (procedure
or function). Each statement executes in the order encountered.

Glossary-20 Mentor Graphics Introduction to VHDL, July 1994

Glossary

short-circuit operation
Short-circuit operation is a predefined logical operation (and, or, nand, and nor)
for operands of types bit and boolean. In a short-circuit operation, the right
operand is evaluated only if the left operand does not possess adequate
information to determine the operation result. In other than short-circuit
operations, both the left and right operands are evaluated by the compiler before
the predefined operator is applied.

signal
A signal isaVHDL object that you can assign projected valuesto. It hasa
history and atime dimension.

slice
A dlice name designates a one-dimensional array that is created from a
consecutive portion of another one-dimensional array. A slice of adesign item
eguates to anew design item of the same type. In the following example, line9
assignsadliceof array_atoarray_b.

1 PROCESS (sens_signal)

2 TYPE ref _arr 1S ARRAY (positive RANGE <>) OF integer;

3 VARI ABLE array_a : ref_arr (1 TO 12); --declare array_a
4 VARI ABLE array b : ref_arr (1 TO 4); --declare array_b
5 BEG N

6 FORi IN1 TO 12 LOOP -- load array with values 1 - 12
7 array_a (i) =1 + 1;

8 END LOOP;

9 array_b := array_a (6 TO9); -- slice of "array_a"

10 END PRCCESS;

SLL
SLL (shift left logical) is one of the System-1076 predefined multiplying
operators. The left operand type is aone-dimensional array of any type or any
integer type. The right operand is a non-negative value of any integer type.

source code
Source code refers to the combination of VHDL constructs that model a
hardware system’s behavior. Source codeis created and stored in files that can
be edited by the user. The source code (files) are compiled to produce the
simulator-compatible database.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-21

Glossary

specification
A specification associates additional information with a VHDL description.
There are three types of specification: attribute, configuration, and
disconnection.

SRA
SRA (shift right arithmetic) is one of the System-1076 predefined multiplying
operators. The left operand type is aone-dimensional array of any type or any
integer type. Theright operand is a non-negative value of any integer type.

SRL
SRL (shift right logical) is one of the System-1076 predefined multiplying
operators. The left operand type is a one-dimensional array of any type or any
integer type. The right operand is a non-negative value of any integer type.

structural description
A structural description isthe VHDL method for describing the hardware design
as an arrangement of interconnected components.

subprogram
A subprogram allows you to decompose a hardware system into behavioral
descriptions or operations using algorithms for computing values. The
hardware’' s high-level activities are declared using a subprogram declaration.
The actual operations are implemented in a subprogram body. Subprograms
have two forms. procedures and functions.

subtype
A subtypeis asubset of apreviously-declared type defined with a specific range
or index constraint. Y ou can use a subtype if you know that a set of valuesis
within arange of the original type. The system automatically checks the subtype
value range for you in this case. (Also refer to base type).

Glossary-22 Mentor Graphics Introduction to VHDL, July 1994

Glossary

syntax
Syntax refersto the formal rules that specify the form of a VHDL description.
The syntax specifies how specifications, declarations, statements, and other
constructs should be written. The VHDL compiler checks the correctness of a
VHDL description against the set of syntax and semantic rules. The compiler
generates error messages when discrepancies are found.

The following example shows a line of code (line 1) that has incorrect syntax.
(Also refer to semantics).

1 SIGNAL sigl : ny _gsimstate --Syntax incorrect, mssing (;)
2 SIGNAL sig2 : ny_qgsimstate;

timestep
A timestep is the unit of time assigned to the smallest time increment in the
simulator. The timestep value (simulator resolution) can be changed within the
simulator.

transaction
A transaction is avalue and atime for the value to occur on adriver. Inthe
statement a <= ' 1' AFTER 10 ns; atransaction isdefined for the driver of
signa "a'. Thevaueis’l andthetimeistherelative delay of 10 ns.

transport (delay)
Transport delay refersto atype of delay used in VHDL signal assignments. The
optional reserved word transport is used in the right-hand side of various signal
assignments to specify the type of delay associated with the first waveform
element. A transport delay indicates any pulse will be transmitted to the target,
no matter how short the duration/width. The waveform exhibits an infinite
frequency response. If the reserved word transport isnot used in asignal
assignment, adefault inertial delay for the waveform is assumed.

type
A type declaration forms a template that describes objects that you declare, such
as signals, constants, and variables. There are predefined types (such as bit and
bit_vector) and an infinite number of types (templates) that you can specify. The
following declaration shows how the type bi t is declared:
TYPE bit IS (*0', '1'); Signalsdeclared to beof typebit can havea
valueof 0’ or '1’. No other valueis allowed.

Mentor Graphics Introduction to VHDL, July 1994 Glossary-23

Glossary

unconstrained array definition
An unconstrained array is an array in which you specify the type of the indices,
but do not specify the range. In place of specifying the range, you use the box
symbol "<>". Inthisway you can declare the array type without declaring its
range, and then you can declare as many arrays of the same type with the range
you desire. Thisfeature allows you to pass arrays of arbitrary sizes as
parameters. The following example shows an unconstrained array definition:

TYPE data_array IS ARRAY(i nteger RANGE <>) OF integer;

uniformity
Uniformity is acoding principle that means each module of codeis created in a
similar way using the various VHDL building blocks. Uniformity helps to make
your hardware description readable. Thisimplies good programming style such
as consistent code indentation and informative comments.

variables
A variableisone type of VHDL object. (Signals and constants are also objects.)
A variable has one current value associated with it that can be changed in a
variable assignment statement using the variable assignment delimiter (:=). A
variable has no history.

visible
Anitemisvisible at apoint in the codeif it islegal (according to the rules of
visibility) to refer to that item at that point.

visibility
Visibility refers to the region of code where adeclaration isvisible.
waveform

A waveform is a series of transactions associated with adriver. The transactions
indicate the future values of the driver in an order with respect to time.

working library
Refer to library.

Glossary-24 Mentor Graphics Introduction to VHDL, July 1994

Index

INDEX

= 2-22

<>, 3-11, Glossary-4
<=, 2-18,5-11

=, 2-22

-, 2-11

&, 2-23,5-11

Abstract Literal, Glossary-1
Abstraction, 1-8, Glossary-1
Primary level of, 2-5to 2-9
Access types, 3-13, 3-14
Actual, Glossary-1
Actual parameter, 4-24, 4-26
Associating to formal parameter, 4-25
Positional association, 4-26
Actual part, 4-24
Actual port, see Port
Adding operators, Glossary-1
Aggregate, Glossary-2
Allocator, Glossary-2
Anonymous types, 3-8, Glossary-2
Architecture body
Definition of, Glossary-2
Description of, 2-7
Format of, 2-7
Architecture declarative part, 2-13
Architecture statement part, 2-13
Array types, 3-9 to 3-12, Glossary-3
Arrow delimiter (=>), 2-22
Ascending, Glossary-3
ASCII, Glossary-3
Assertion violation, Glossary-3
Association element, format of, 4-24
Association list
Format of, 4-8, Glossary-3
Attribute, Glossary-3
Attribute name, format of, see Predefined
attributes

Backus-Naur, Glossary-4
Base type, Glossary-3

Mentor Graphics Introduction to VHDL, July 1994

Behavioral description
Code examplefor, 2-15, 2-19
Definition of, 2-10, Glossary-4
Description of, 2-14 to 2-29
Summary, 2-28
Binding indication, Glossary-4
Bit, see Predefined types
Bit_vector, see Predefined types
Block, Glossary-4
Block statement
Description of, 4-4 to 4-7
Format of, 4-4
Box, <>, 3-11, Glossary-4
Bus, Glossary-5

Case statement

Definition of, 2-21

Format of, 2-21
Case statement aternative

Description of, 2-21
Character literal, Glossary-5
Comment, Glossary-5
Comment delimiter (--), 2-11
Compiler

Definition of, Glossary-5
Compl ete context, Glossary-5
Component, Glossary-5
Component binding, Glossary-6
Component declaration

Format of, 4-8

Use of, 4-7
Component instantiation, 4-7 to 4-12
Component instantiation statement

Format of, 4-8

Use of, 4-8
Composite type, Glossary-6
Composite types, 3-9to 3-13
Concatenation, Glossary-6
Concatenation operator (&), 2-23
Concurrency, principle of, 4-2
Concurrent decomposition, 4-3 to 4-12

Index-1

Index

INDEX [continued]

Concurrent procedure call
Format of, 4-27
Concurrent signal assignment statement
Definition of, 2-31
Format of, 2-31
Concurrent statements, Glossary-6
Concurrent vs. sequential modeling, 4-28 to
4-36
Conditional signal assignment
Definition of, 2-32
Format of, 2-32
Conditional waveforms, format of, 2-32
Configuration declaration, Glossary-6
Configuration specification, 2-13, Glossary-6
Constant, Glossary-6
Constrained array definition
Definition of, Glossary-7
Example of, 3-9
Format of, 3-9
Congtraint, Glossary-7
Constructs, definition of, 2-2, Glossary-7

Data-flow description

Code example for, 2-31, 2-33

Definition of, 2-10, Glossary-7

Description of, 2-30 to 2-33
Declaration, Glossary-7
Default expression, Glossary-7
Deferred constant, Glossary-7
Delay

Delta, 6-19, Glossary-8

Inertial, Glossary-13

Transport, Glossary-23
Deltadelay, 6-19, Glossary-8
Deltadelay, definition of, 4-3
Design entity, Glossary-8
Design file, Glossary-8
Design library, see Library
Design unit, Glossary-8
Design, definition of, 1-1
Designing, definition of, 1-3
Discrete array, Glossary-9

Index-2

Driver, Glossary-9

Entity, see Design entity
Definition of, 2-5
Description of, 2-5to0 2-9
Entity header, Glossary-9

Entity declaration
Definition of, Glossary-9
Description of, 2-6
Format of, 2-6

Enumeration literal, Glossary-9
Overloading, 5-6, 5-7

Enumeration type definition
Examples, 3-7
Format of, 3-7

Enumeration types, 3-7

Error checking, 6-17 to 6-23

Errors
Compile-time, Glossary-9
Run-time, Glossary-9

Event, Glossary-10

"event, predefined attribute
When to use, 6-25

Execute, Glossary-10

Expression, Glossary-10

External block, see Block

File type definition
Format of, 3-13, 3-14
File types, 3-13
Floating point definition
Format of, 3-6
Floating point types, 3-6
Formal, Glossary-10
Formal parameter, 4-25
Associating to actual parameter, 4-25
Positional association, 4-26
Formal part, 4-24
Formal port, 4-8, see Port
Format effector, Glossary-10
Function
Definition, Glossary-10

Mentor Graphics Introduction to VHDL, July 1994

Index

INDEX [continued]

Function [continued]
Example, 4-23
my_gsim_state from, 6-10
Overloading, 5-7
Predefined, to_gsim_12state, 5-7
Summary, 4-24
to_my_qgsim_12state, 5-9
When to use, 4-14

Function call, 4-24 to 4-27
Format of, 4-24

Generic, Glossary-11
Generic clause

Format of, 2-6
Generic map, 4-11
Generic map aspect, format of, 4-8
Globally static expression, Glossary-11
Guard, see Guard expression
Guard expression, 4-6, Glossary-11
Guarded assignment, Glossary-11
Guarded Signal, Glossary-12

Hidden declaration, 5-5, Glossary-12
Homograph, 5-4, Glossary-12

If statement

Example, 2-17

Format of, 2-17
Index constraint, Glossary-12
Inertial (delay), Glossary-13
Information hiding, 1-9, Glossary-13
I nstantiation, component, 4-11
Integer type definition

Format of, 3-8
Integer types, 3-8, 3-9
Iteration, Glossary-13
Iteration scheme, Glossary-13
Iteration, definition of, 4-3
Iterative statements, Glossary-13

L anguage construct, see Construct
Lexical element, Glossary-14

Mentor Graphics Introduction to VHDL, July 1994

Library, Glossary-14
Library clause
Description of, 4-48 to 4-51
Structure of, 4-48
Library unit, 2-5
Literal, see Construct
Local, Glossary-14
Local port, 4-8, see Port
Locally static expression, Glossary-14
Lookup tables, 6-27
Loops
Using variables and signals, 6-23

Mode, Glossary-15
Modeling
Concurrent vs. sequential, 4-28 to 4-36
Timing, various techniques, 6-5 to 6-16
Modeling, definition of, 1-3
Modularity, 1-4, Glossary-15

Named association, see Named notation
Named notation, 4-26, Glossary-15
Names, Glossary-15

Object code, Glossary-16

Objects, 3-1, Glossary-16

Operators
Overloading, 5-11 to 5-13
Precedence, 5-11

Overload resolution, Glossary-16

Overloading, 5-6 to 5-13
Definition of, Glossary-16
Enumeration Literal, 5-6, 5-7
Operators, 5-11 t0 5-13
Subprograms, 5-7 to 5-11

Package
Definition of, 4-43, Glossary-17
Description of, 4-43 to 4-51
Example, 4-45
Standard package, 4-44

Index-3

Index

INDEX [continued]

Package body
Description of, 4-46
Format of, 4-46
Package declaration
Description of, 4-45
Format of, 4-45
Passive process, Glossary-17
Persistent process, Glossary-17
Physical type definition
Example, 3-5
Format of, 3-4
Physical types, 3-4 to 3-6
Port, Glossary-17
Port clause, 2-13
Example, 2-7
Format of, 2-2, 2-6
Port map, 4-12
Port map aspect, format of, 4-8
Positional association, see Positional notation
Positional notation, 4-27, Glossary-18
Predefined attributes, 3-14 to 3-16
"event, 3-15
"event, when to use, 6-25
"left, 3-16
'pos(x), 3-16
'right, 3-16
Signal, 3-15
'stable, when to use, 6-25
Predefined types
Bit, 2-13, 3-1
Bit_vector, 2-19
Primary, Glossary-18
Procedure
Definition, Glossary-18
Examples, 4-17, 4-20, 4-22
Summary, 4-24
When to use, 4-14
Procedure call, 4-27, 4-28
Procedure call statement
Format of, 4-27
Process, see Persistent and Passive Process
Processlabel, 2-16

Index-4

Process statement
Definition of, 2-16
Format of, 2-16

Program development principles
Abstraction, 1-8
Information hiding, 1-9
Modularity, 1-4
Uniformity, 1-11

Range, format of, 3-5

Record type, Glossary-18

Record, definition, 3-12

Register, Glossary-18

Relational operators, 2-18

Reserved words, definition of, 2-2

Resolution function, 4-43, 6-25, Glossary-19
Use of, 6-25

Resolved signal, Glossary-19

Resource library, see Library

RLL, Glossary-19

RRL, Glossary-19

Scalar types, 3-4 to 3-9
Scope, 5-1to 5-5, Glossary-19
Semantics, Glossary-20
Sengitivity list, 2-16
Separators, Glossary-20
Sequentia statements, Glossary-20
Sequential vs. concurrent modeling, 4-28 to
4-36
Sequentiality, principle of, 4-2
Short-circuit operation, Glossary-21
Signal assignment delimiter (<=), 2-18
Signal assignment statement
Description of, 2-17
Format of, 2-17
How values are assigned, 4-36 to 4-43
Signals
Definition of, 4-36, Glossary-21
Problems within loops, 4-42
Simulation
Increase model performance, 6-23 to 6-26

Mentor Graphics Introduction to VHDL, July 1994

Index

INDEX [continued]

Simulation stimulus, 6-32

Slice, Glossary-21

SLL, Glossary-21

Source code, Glossary-21

Specification, Glossary-22

SRA, Glossary-22

SRL, Glossary-22

'stable, predefined attribute
When to use, 6-25

Structural description
Code examplefor, 2-12
Definition of, 2-10, Glossary-22
Description of, 2-10 to 2-14
Summary, 2-28

Subprogram, 4-13 to 4-24
Definition of, 4-13, Glossary-22
Overloading, 5-7 to 5-11
Summary, 4-24

Subprogram body, 4-14

Subprogram declaration, 4-13

Subtype, 3-2, Glossary-22

Syntax, Glossary-23

Timestep, Glossary-23
Timestep, definition of, 4-2
Transaction, Glossary-23
Transport (delay), Glossary-23
Type
Definition of, Glossary-23
Type declaration
my_gsim_12state, 5-9, 6-10
my_gsim_12state vector, 5-9
my_gsim_state, 5-9, 6-10
my_qgsim_state vector, 5-9
my_qsim_strength, 5-9
my_gsim_strength_vector, 5-9
my_gsim_value_vector, 5-9
Structure of, 3-2
Types
Access, 3-13, 3-14
Array, 3-9t0 3-12
Composite, 3-9to 3-13

Mentor Graphics Introduction to VHDL, July 1994

Declaration, format of, 3-2
Definition of, 3-1
Description of, 3-1 to 3-16
Enumeration, 3-7

File, 3-13

Floating point, 3-6
Integer, 3-8, 3-9

Physical, 3-4to 3-6
Scalar, 3-4to 3-9

Subtype, 3-2

Unconstrained array definition
Definition of, Glossary-24
Example of, 3-10
Format of, 3-12

Uniformity, 1-11, Glossary-24

Universal integer, 3-8

Use clause
Description of, 4-48 to 4-51
Structure of, 4-48

Variable assignment delimiter (:=), 2-22
Variable assignment statement
Definition of, 2-21
Format of, 2-21
Variable declaration
Description of, 2-20
Format of, 2-20
Variables, 4-36, Glossary-24
Use of, 6-23, 6-24
VHDL model, definition of, 1-1
VHDL, definition of, 1-1
Visibility, 5-1 to 5-5, Glossary-24
Visible, Glossary-24

Waveform, Glossary-24
Working library, see Library

Index-5

