TR 1999- 1 0.4pt 0.4pt

Technical Report 1999-03P(1999/9/2)

VHDL for ELE548

Heather Hinton'

Electrical and Computer Engineering,
Ryerson Polytechnic University,

350 Victoria Street,

Toronto, Ontario,

Canada, M5B 2K3

I hhinton@ee.ryerson.ca

Copyright (©) 1999 by the authors.

ECE Technical Reports

This technical report series allows faculty of the Department of Electrical and Computer
Engineering to publish detailed and recent research results in a timely manner. It is not
intended that these technical reports duplicate outside publications. However, due to the
time lag in publishing results in formal, peer reviewed venues, many of these technical reports
will be submitted for review and publication elsewhere. In such cases, it is intended that the
technical reports will contain additional details and results that cannot be included elsewhere
due to space limitations.

In addition to technical reports pertaining to research conducted within the Department,
the technical report series may also be used to publish ”pedagogical” results and methods.
Ryerson has a strong tradition and committment to high-quality teaching and teaching
methods. Many of our faculty are actively engaged in developing new pedagogical techniques,
including the use of multi-media and Web-based tools for instructional purposes. We believe
that it is equally important to make these results available to the academic and education
community.

While all reports will be numbered sequentially, a research report will be identified by the
technical report number and the code R. Likewise, a pedagogical report will be identified by
the technical report number followed by the code P.

For more information about this technical report series, please contact Heather Hinton
hhinton@ee.ryerson.ca or Andrew Kennings akenning@ee.ryerson.ca.

Publication History

This manual is an introductory tutorial in VHDL for third year students taking ELE548,
Computer Architecture at Ryerson Polytechnic University. Initially, the manual contains
only the introductory VHDL tutorial. This manual consists of an introduction to VHDL
configured for the course (ELE548), followed by a series of exercises that are to be
completed by the student. These exercises are intended to introduce all the concepts
required to complete the ELE548 project. The examples used in this document are based
the examples discussed in Kevin Skahill’s book, “VHDL for Programmable Logic” [1].

©1999 by the authors.

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit ed-
ucational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Department of Electrical and
Computer Engineering, Ryerson Polytechnic University in Toronto, Canada; an acknowl-
edgement of the authors and individual contributors to the work; an all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a license with payment of fee to the Department of Electrical and Computer Engi-
neering. All rights reserved.

Contents

1

Introduction

1.1 Using VHDL in the Design Process

A Simple Circuit

2.1 The Entity Declaration

2.2 Architecture Body
2.2.1 Behavioural Description o L.
2.2.2 DataFlow Description L0 L.
2.2.3 Structural Descriptions

2.3 Signals
2.3.1 Internal Signals
2.3.2 Signal Aliases

2.4 Variables

Combinational Logic

3.1 Concurrent Statements
3.1.1 Boolean Statements
3.1.2 With-Select-When Statements
3.1.3 With-Select-When-When Others
3.1.4 When-Else Statements

3.2 Sequential Statements L
3.2.1 If-Then-Else Statements
3.2.2 Case-When Statements,
3.2.3 Loop Statements

Synchronous Logic

4.1 Clocked Circuits. e

4.2 Reset Signals

Using Components

Making Your Own Library

6.1 Component Declaration,
6.2 Package Declaration o Lo
6.3 Libraries L
6.4 Building Your Library oo L
6.5 Instantiating a Library Component in a VHDL File
6.6 Compiling Your Library into a VHDL File

Using Max+PlusII for VHDL

v

—

0 00~ 1O Ui = W W

14
14
15

17

20
20
20
21
21
21
23

24

8 VHDL Syntax Primer

81 Reserved Words
8.2 Declarations L.
8.2.1 Entity Declaration
8.2.2 Architecture Body
8.2.3 Library Declarations
8.2.4 Package Declarations
8.2.5 Component Declarations
8.2.6 Signal Declarations
8.2.7 Constant Declarations
8.2.8 Alias Declarations.
8.2.9 Variable Declarations
8.2.10 Integer Type Declarations
8.3 Simple Assignment Statements.
8.3.1 Signal Assignment
8.3.2 Variable Assignment
8.4 Concurrent Statements
8.4.1 when-else
8.4.2 with-select-when
8.5 Sequential Statements
8.5.1 Process Declaration
8.5.2 if-then-else,
853 case-when
854 for-loop
8.5.5 while-loop L
8.5.6 Synchronous Logic with Asynchronous Reset .
8.6 Modes
86.1 inm.
86.2 out
86.3 inout
8.6.4 buffer L.
9 Exercise: A 4-bit Adder
9.1 A Schematic-Entry 4-Bit Adder
9.2 A VHDL 4-Bit Adder
10 Exercise: A 16-bit Adder
10.1 Brute Force Schematic Entry 16-bit Adder
10.2 Brute Force VHDL 16-bit Adder
10.3 16-bit Adder Using Components

10.4 16-bit Adder Using User-Defined Library Components

11 Exercise: D Flip-Flops

11.1 A VHDL Single-Bit D Flip Flop with Asynchronous Reset

11.2 A VHDL 4-bit D Flip Flop with Asynchronous Reset

25
25
25
25
25
26
26
26
26
26
27
27
27
27
27
27
27
27
27
28
28
28
28
28
28
29
29
29
29
29
29

30
30
30

32
32
32
33
33

12 Exercise: Multiplexors 37

12.1 A VHDL 2-bit Multiplexor 37
13 Exercise: Using Components 38
13.1 An Adder-D Flip-Flop Circuit 38
13.2 Adder-D Flip Flop Circuit Using Library Components. 39

vi

List of Figures

O~ O Ot i W N =

Black Box Representation of Circuit 3
Code: Entity Declaration for Black Box Circuit 3
Code: Declaring and Using Library Packages 4
Code: Behavioural Description of Black Box Circuit 5)
Code: Alternate Behavioural Description of Black Box Circuit 5)
Code Fragment: DataFlow Description of Black Box Circuit 6
Code: Structure Description of Black Box Circuit 6
Code: Internal Signals o 7
Code Fragment: Declaring Aliases to a Signal 8
Code: Alternate Behavioural Description of Black Box Circuit 8
Code: Concurrent Boolean Statement Circuit 9
Code Fragment: With-Select-When Statements 10
Code: With-Select-When-When Others Statements 10
Code Fragment: When-Else Statements 11
Code Fragment: When-Else Statements 11
Code Fragment: If-Then-Else Statements 12
Code Fragment: Case-When Statements 12
Code: For-Loop Statements 13
Code: While-Loop Statements 13
Code Fragment: A Clock-Sensitive Circuit 14
Code Fragment: A Clocked, Negative-Edge Triggered Circuit 15
Code Fragment: Asynchronous Resets in Synchronous Circuits 15
Code: Instantiating A Component 17
Code: Instantiating Multiple Components 18
Code: User-Defined Libraries and Components 22
1-Bit Carry-Propagate Adder 30
Code: Composite Adder-D Flip Flop Circuit 38
Code: Adder-D Flip Flop Circuit Using Library Components 39

vil

1 Introduction

VHDL is an acronym for Very High-Speed-Integrated-Circuit Description Language, which
pretty much describes what VHDL actually is. It is a language, just as C and Java are
languages. VHDL is used to describe, model, and synthesize (make) a circuit, just as C is
used to describe, model and implement a solution to a problem. So, don’t be surprised when
we refer to your VHDL solutions as “code”!

Like C, VHDL supports libraries (design libraries that contain common or reusable com-
ponents, such as and gates). VHDL also allows us to create modular designs, so that we
can take advantage of hierarchical design (building a big, complex circuit from a bunch of
smaller, simpler circuits).

Like Java, VHDL is “device independent”. That is, we can design a circuit before we
know which type of device it will be implemented on. In fact, we can take the same design
and “target” many different device architectures.

Once you have designed a circuit, there are two main tasks that you can accomplish: you
can synthesized the circuit or you can simulate the circuit. Simulation is usually done before
synthesis. In ELE548 we will focus on simulation. Why? By simulating a VHDL design of a
circuit, we can “run” the VHDL code and determine if their are flaws that will prevent the
actual realization of the circuit from working. Simulation is a way to test a hardware circuit
in software, before we go through the time and expense of implementing the hardware.

There is a danger with relying only on simulation, however. In software, we can design a
circuit that cannot be easily realized (synthesize) in hardware. Indeed we can (inadvertently,
of course) design a circuit that is physically meaningless! For this reason, we will (try very
hard to have the equipment to allow you to) synthesize and implement a VHDL design at
the end of this course.

1.1 Using VHDL in the Design Process

In general, there is a recipe of steps to follow when designing a circuit. These steps can be
described as (p. 8, [1]):

1. Define the design requirements
Define (code) the design in VHDL
Simulate the VHDL “source” code
Synthesize the design !

Fit the design into a given device architecture

A

Programme the device

LAt the same time we may also optimize the design, so that it will perform better for a given device
architecture. We will probably also concern ourselves with placing and routing the design, that is, making
the VHDL design fit within the constraints of a programmable logic device or a field-programmable gate
array.

In this course we will stick to steps 1, 2, and 3. That will be plenty for our purposes,
especially because steps 2 and 3 are often iterative (again, like C, there will be debugging,
but no hacking).

Note: This tutorial should provide you with the background information you need to com-
plete the ELE548 project. There are several other good sources of VHDL information that
you may wish to investigate, including

e The Max+plusII VHDL Help (Help Menu, VHDL Help) has lots of information, includ-
ing a syntax definition, information on templates and how to use the VHDL compiler
within Max+plusII.

e Keven Skahill’s book, VHDL for Programming Logic, [1], is also very good, but at a bit
higher level than required for this course. Nevertheless, a good reference and may be
handy for later courses. This is Prof. Hinton’s favourite VHDL reference.

e The book by Charles Roth, [2], Digital Systems Design Using VHDL is another good ref-
erence book that happens to be Prof. Kennings’ favourite. This book is more “textbook-
like” then the Skahill book.

2 A Simple Circuit

To make our VHDL design as modular as possible (so that we can take advantage of the
benefits of hierarchical design), VHDL forces us to keep the circuit interface and internals
separate. Consider a black box, shown in Figure 1, that takes as input two four-bit vectors
and produces a four-bit vector output. We know nothing about how the input or the output
are related and what the functionality of this black box actually accomplishes. But, we do
know a great deal about the interface to this black box. If we think about this black box
as a C-function, what we know from this figure is the equivalent of the function declaration,
called the entity declaration in VHDL.

—ad
a2) R
a(1) o2 ——
a0) N
—b(2) o
— b(1)
— b(0)

Figure 1: Black Box Representation of Circuit

2.1 The Entity Declaration

In VHDL, we describe the interface to this black box/entity using an entity declaration,
as shown in Figure 2. Like a function declaration in C, an entity declaration describes the
inputs and outputs to an entity (the black box). This entity has two inputs, the four-bit
vectors a and b, and two outputs, a four-bit vector ¢ and a single bit output aob. The
entity has the name bbox, and the definition of the entity is bounded by the entity bbox
and end bbox statements.

entity bbox is port(
a,b : in std_logic_vector(3 downto 0);

c : out std_logic_vector(3 downto 0);
aob : out std_logic);
end bbox;

Figure 2: Code: Entity Declaration for Black Box Circuit

The words entity, is, port, end, in, out, std_logic, std_logic_vector, and downto
are reserved words in VHDL, meaning that the VHDL compiler knows what these words
mean and you cannot use them as variable names.

What is a port? It is an I/O signal within an entity declaration. In the code shown
above, there are four ports. Each port is declared with a signal name (such as a or aob),
a mode (or direction, such as in or out), and a data type (such as std_logic_vector).

3

The code above shows two types of mode in the entity declaration, in and out. These
can be thought of as “single-use” or “unidirectional” modes: the source of an in-mode signal
is external to the entity, and the destination of an out-mode signal is external to the entity.

An additional, useful, mode is the inout mode. This mode is used to declare a signal
that acts as both an input and an output signal (think of feedback).

All we know about the inside of the black box from the mode description is which signals
are used as inputs and which signals are used as outputs. The data types of a port declaration
tells us how to treat the signal on the port. Just as in C, declaring a variable as an integer or
a floating point tells us how to interpret the variable, declaring a port with a data type tells
us how to interpret the data on the port. So, std_logic_vector(3 downto 0) describes a
four-bit vector (bits 0, 1, 2, 3) where the order of significance is from bit(3) downto bit(0).
std_logic without the vector qualifier describes a single bit.

The std_logic type is an IEEE standard, provided by the IEEE std_logic_1164 package.
In order to use this library, we must include it (remember including library files in C?7). We
include the library and the packages used before the entity declaration, as shown in Figure 3.

library ieee;

use ieee.std_logic_1164.all;

entity entity_name is port(
-- stuff missing here

end entity_name;

Figure 3: Code: Declaring and Using Library Packages

The words library and use are also reserved words in VHDL. Also, the ieee library is
“built-in” to VHDL (remember how C knows about system include files?).

2.2 Architecture Body

What about the internal workings of the entity? We know what the entity interface looks
like, thanks to the entity declaration. We must now define the architecture body, the
internal working, or behaviour, of the entity. We can chose between one of three “ways” to
describe the architecture body: behavioural, dataflow, or structural descriptions. The main
difference between these approaches is the level of detail required (or, conversely, the level
of abstraction allowed).

2.2.1 Behavioural Description

Consider the architecture body shown in Figure 4. This behaviour description is quite rem-
iniscent of a C-language programme in many ways. Behavioural descriptions are high-level,
just as C is a high-level language. The architectural description is bounded by the archi-
tecture and end arch_bbox statements. When declaring the architecture arch_bbox,
we define which entity the architecture belongs to (of bbox is). The process statement is
used to enclose an algorithm.

The process in Figure 4 is named comp and the sensitivity list of comp is declared as
(a,b). The sensitivity list identifies the signals that will cause the process to execute. In this

4

architecture arch_bbox of bbox is
begin
comp: process (a,b) begin
c <= b;
if a = b then
aob <= ’17;
else
aob <= ’07;
end if
end process comp;
end arch_bbox;

Figure 4: Code: Behavioural Description of Black Box Circuit

architecture arch_bbox of bbox is

begin
comp: process (a,b) begin
c <= b;
aob <= ’07;
if a = b then
aob <= ’17;
end if

end process comp;
end arch_bbox;

Figure 5: Code: Alternate Behavioural Description of Black Box Circuit

case, the circuit is sensitive to changes in the two input signals, a and b. This means that
whenever a or b changes, the comp process changes.

Note that the assignment statement aob <= ’1’ indicates that the variable aob is as-
signed the (bit) '1’. To see how this reads, try reading this statement from right to left,
instead of the usual left to right. You can then pronounce this statement as '1’ is assigned
to aob.

Why is this description called behavioural? Because it is fairly easy to read the behaviour
from the description: this VHDL listing describes a 4-bit equality comparison function.
Because this behavioural description is given by an algorithm, we may suspect, that like a
high-level programme written in C, this is not the only possible description. So, the VHDL
code shown in Figure 5 is equivalent to the code shown in Figure 4.

2.2.2 DataFlow Description

A dataflow description is very similar to a behavioural description. In fact, the two are often
both referred to as behavioural. The main difference is that a dataflow description does
not use the process construct. Clearly the dataflow description is easy to understand for
a simple example, such as the one we are looking at. With a more complicated algorithm

architecture dataflow of bbox is
begin

aob <= ’1’ when (a=b) else ’0’;
end dataflow;

Figure 6: Code Fragment: DataFlow Description of Black Box Circuit

is required, such as one with nested sequential statements, a behavioural description will
probably make more sense.

The big difference between behavioural and dataflow can be seen when we consider a
circuit where the inputs may change at any time, but where we only want these (possibly
changed) inputs to be noticed when a clock pulse triggers the circuit. We can easily describe
this using a behavioural description where process(clk) identifies the clock signal as causing
the circuit to activate 2. With a dataflow description, we cannot as easily or neatly control
“when” the circuit activates.

2.2.3 Structural Descriptions

A structural description consists of VHDL netlists, lists of signals and how they are “joined”
by components, such as and or the hierarchically created xnor (a combination of nor and
not).

use work.gatespkg.all;
architecture struct of bbox is
signal tmp : std_logic_vector(0 to 3);

begin

u0: xnor2 port map (a(0),b(0),tmp(0));

ul: xnor2 port map (a(1),b(1),tmp(1));

u2: xnor2 port map (a(2),b(2),tmp(2));

u3: xnor2 port map (a(3),b(2),tmp(3));

u4: and4 port map (tmp(0),tmp(1l),tmp(2),tmp(3),a0b);
end struct;

Figure 7: Code: Structure Description of Black Box Circuit

Take a look at the code shown in Figure 7. This is the structural equivalent of the
behavioural and dataflow descriptions already discussed. The netlists in this description
relate the inputs a(1) and b(1) with the output tmp(1) using the component xnor2 3.
Netlists are not as easy to read or understand as the behavioural or dataflow descriptions we
have already seen. For this reason, we will focus on behavioural and/or dataflow descriptions
in this course.

2See the section on clocked circuits for more details.

3The components xnor2 and and4 must have been defined elsewhere, and compiled into the library
work.gatespkg.all. This allows us to create our bbox component hierarchically, building on already
defined components. If we compile bbox and include it in a library, it to can be used to hierarchically create
more complex components. We will see how to do this in one of the exercises.

2.3 Signals

So far, we have focused on input and output signals defined in an entity declaration. These
signals define the interface to the circuit that we are designing. These signals may have the
“directions” (or modes) of in, out, or inout *. Other useful signals include internal signals
(discussed in next section), signal aliases (following next section) and clock and reset signals
(both synchronous and asynchronous), discussed in Section 4.1.

library work;
use work.gatespkg.all;
entity bbox is port(

a, b : in std_logic_vector(3 downto 0);
axnorb : out std_logic);
end bbox;

architecture struct of bbox is
signal tmp : std_logic_vector(0 to 3);
signal out_and4 : std_logic;
begin
-- instantiate components
u0: xnor2 port map (a(0),b(0),tmp(0));
ul: xnor2 port map (a(1),b(1),tmp(1));
u2: xnor2 port map (a(2),b(2),tmp(2));
u3: xnor2 port map (a(3),b(2),tmp(3));
u4: and4 port map (tmp(0),tmp(1l),tmp(2),tmp(3),out_and4);
-- extract output signal
axnorb <= int_out_and4;
end struct;

Figure 8: Code: Internal Signals

2.3.1 Internal Signals

In section 2.2.3, we saw a signal defined in the architecture body that did not have a mode
(signal tmp). This signal is an internal signal, meaning that it is not part of the interface
defined in the entity declaration. Internal signals are very useful as they provide a means
of “gluing” components together. In Figure 7, the internal signal tmp is used to glue the
outputs of the xnor components to the input of the 4-input and4 component.

In fact, we can also use internal signals to define the output of the and4 component. If
we do this, however, we must find a way to extract this internal signal, and map it to an
interface signal (defined as mode out in the entity declaration). This is actually quite easy,
and is shown in Figure 8.

4Additionally, these signals could be defined as buffer, although we will not discuss this mode in this
course.

2.3.2 Signal Aliases

Another useful thing that we can do is create a signal alias. Aliases are useful for allowing
us to rename a signal, perhaps into a more meaningful signal name, for the scope of a
description. The declaration of an alias is shown in Figure 9.

signal input_vector: std_logic_vector (15 downto 0);

alias op_vector: std_logic_vector(7 downto 0) is input_vector(15 downto 8);
alias opl : std_logic_vector(3 downto 0) is input_vector(7 downto 4);
alias op2 : std_logic is input_vector(3);

Figure 9: Code Fragment: Declaring Aliases to a Signal

An alias is an “alternative identifier” for an existing object. A change to an alias is
equivalent to a change to the original signal. For example, assigning a value to op2 in
Figure 9 has the same affect as assigning that value to input_vector(3).

Aliases are really useful if you have a vector signal, where individual bits within the
vector have distinct meanings. Using an alias, we can create an identifier to refer to these
bits individually.

2.4 Variables

How do we store local values in VHDL? A signal doesn’t really allow us to do this. Instead,
we resort to variables, declared as follows:

variable var_name : var_type := var_initial_value;

Variables must be declared in a process, and are local to that process (recall that signals,
on the other hand, are defined outside of a process).

architecture arch_bbox of bbox is
begin
comp: process (a,b)
variable inc_amt: integer := 2
begin
-- code that includes use of integer variable inc_amt
end process comp;
end arch_bbox;

Figure 10: Code: Alternate Behavioural Description of Black Box Circuit

Useful variable types that you may require in this course include bit, boolean, and
integer
If you need a variable with a constant value, you can declare a constant:

constant constant_name : const_type := const_initial_value;

The constant types are the same as the variable types. Like a variable, a constant must be
declared within a process and is local to that process.

3 Combinational Logic

Combinational logic can be written with both concurrent and sequential statements. Con-
current statements may be executed in parallel (concurrently) and are found in dataflow
and structural descriptions of a circuit. Sequential statements must be executed in a given
sequential order and are used in behavioural descriptions (hint: what is the big difference
between behavioural and dataflow descriptions?)

3.1 Concurrent Statements

Concurrent statements fall outside of the process statement (and hence fit nicely with
dataflow descriptions).

3.1.1 Boolean Statements

The most “obvious” of concurrent statements are boolean statements. As an example,
suppose we wish to build a circuit that will produce the logical-and and logical-or of two
bits. We can accomplish this using boolean statements, as shown in Figure 11.

library ieee;
use ieee.std_logic_1164.all;
entity cctl is port(

a,b : in std_logic;
land,lor : out std_logic);
end cctl;
architecture archcctl of cctl is
begin

land <= a and b;
lor <= a or b;
end archcctl;

Figure 11: Code: Concurrent Boolean Statement Circuit

The output of this circuit is the two signals, land and lor, produced concurrently (simul-
taneously).
The boolean statements that are available in the ieee 1164 library are:

and, or, nand, not, xor, xnor

These data types can be used with bit and Boolean variables (std_logic) and with one-
dimensional arrays of bits and Boolean variables (such as std_logic_vector(3 downto 0)),
where both variables have the same length.

If you have an equation with multiple boolean operations, you must use parenthesis to
force VHDL into order of operations (otherwise you will get a compile-time error).

3.1.2 With-Select-When Statements

There may be cases where a signal value is assigned based on the value of another signal (a
selection signal). In this case, the with-select-when statements come in handy.

For example, consider a circuit where the output, z, will be assigned the value of signals
a or b, depending on the value of a selection signal, s. We can represent this in VHDL as
shown in Figure 12.

ARCHITECTURE cct OF testcct IS
BEGIN
with s select
z <= a when ’0’,
b when ’1’;
END cct;

Figure 12: Code Fragment: With-Select-When Statements

Careful inspection of this code fragment should convince you that it is remarkably similar
to the circuit that you designed in the “Introduction to Max+plusIl” tutorial. In fact,
we have used the with-select-when statement to implement a single-bit multiplexor. Note:
What happens if you put this code fragment into a proper VHDL structure and try to compile
it? To see why this happens, read the next section... This example is easily expanded to
create higher-order multiplexors.

3.1.3 With-Select-When-When Others

Because of how std_logic is defined, a single bit does not necessarily have only two values
(unless it is explicitly Boolean). Other possible values include high impedance, unspecified,
low impedance, and so on. For this reason, we have the choice of specifying the case when
others as a catch-all for all other, not already specified, values of the selection signal. This
idea is similar to the use of default in a C-language case statement.

Figure 13 shows the when-others “equivalent” of Figure 12.

ARCHITECTURE cct OF testcct IS
BEGIN
with s select
z <= a when ’0’,
b when ’1°,
’0’ when others;

Figure 13: Code: With-Select-When-When Others Statements

The code in Figure 13 states that for any value of s other than “07”, the signal z will have
the same value as the signal b.

10

3.1.4 When-Else Statements

The when-else statements are a version of the when-select statements where assignment
is based on a condition that may or may not revolve around a single signal. The condition
evaluated in this type of statement may be based on a single signal, like the when-else
statements, or on multiple signals, or multiple conditions involving different signals. For
this reason, there is an order of preference within a when-else statement; once a successful,
or true, condition is encountered, the assignment specified by the when-else statement is
executed and the entire clause is “exited”.

For example, the when-else equivalent of the code of Figures 12 and 13 is shown in
Figure 14.

ARCHITECTURE cct OF testcct IS

BEGIN
z <= a when (s=’0’) else
b;
END cct;

Figure 14: Code Fragment: When-Else Statements

Suppose we only want z to be assigned the value of a or b based on the select signal s and
some other condition. We can create compound conditional statements within a when-else
statement. All that we have to do enclose the compound statement in a set of parentheses,
to “create” a simple statement, as seen in Figure 15.

ARCHITECTURE cct OF testcct IS
BEGIN
z <= a when (s=’0’ and ocondl=true) else
b when (s=’1’ and ocond2=true) else
z,;
END cct;

Figure 15: Code Fragment: When-Else Statements

3.2 Sequential Statements

The combinational circuit(s) that we saw in the previous sections were fairly simple: they
could be implemented using simple gate logic, and represented with simple combinational
expressions.

In this section, we will look at sequential statements, those that are used within be-
havioural descriptions.

3.2.1 If-Then-Else Statements

The if-then-else statements have the same meaning in VHDL as they do in the C-language.
By comparison with the combinational statements of the previous section, these statements

11

are the sequential equivalents of the with-select-when and when-else statements.
Figure 16 represents the if-then-else equivalent representation of the multiplexor-type
functionality described in the previous section.

ARCHITECTURE cct OF testcct IS

BEGIN
test: process(a,b,s)
begin
if s=’0’ then
z <= a,;
elsif (s=’1’) then
z <= b;
end if;
end process;
END cct;

Figure 16: Code Fragment: If-Then-Else Statements

3.2.2 Case-When Statements

A case-when statement is the sequential equivalent of a with-select-when statement.
Figure 17 shows the case-when equivalent of the simple, single-bit multiplexor-type circuit
of Figures 12 to 16. Note that this code must account for the other possible values of the
signal s.

ARCHITECTURE cct OF testcct IS
BEGIN
test: process(s)
begin
case s 1is
when ’0’ => z <= a;
when 1’ => z <= b;
when others => z <= b;
end case;
end process;

Figure 17: Code Fragment: Case-When Statements

3.2.3 Loop Statements

There are two types of loop statements that we can use in VHDL: a for loop and a while
loop. They tend to be used when a set of repetitive operations need to be executed, usually
a bit-wise operation on a bit-vector. Figure 18 shows a simple for-loop used to initialize an
8-bit vector.

12

ARCHITECTURE cct OF test_cct IS
signal sum: std_logic_vector(7 downto 0);

BEGIN
test: process(clk)
begin

for i in 7 downto O loop
sum(i) <= ’0’;
end loop;
—-— code requiring clk and sum
end process;
END cct;

Figure 18: Code: For-Loop Statements

Unlike a for-loop, which has a predefined number of iterations, controlled by the counter
(iin Figure 18), a while-loop will execute as long as a “controlling” condition evaluates to
true (just like in the C-programming language) °. The while-loop equivalent of Figure 18

ARCHITECTURE cct OF test_cct IS
signal sum: std_logic_vector(7 downto 0);

BEGIN
test: process(clk)
variable i: integer := 0;
begin

while 1 < 7 loop
sum(i) <= ’0’;
i = i+1;

end loop;

end process;

Figure 19: Code: While-Loop Statements

is shown in Figure 19.

Note that the while-loop of Figure 19 requires that we declare and initialize the variable
i. Again, we can see the similarities to the C-language, where 1i is local to the scope of a for
loop and need not be declared, but is not “built-in” to a while loop and therefore must be
declared and initialized.

®Note that this construct is not supported by Max+PlusII.

13

4 Synchronous Logic

What happens when we need to synchronize our actions, for example, when a circuit is
clocked? It shouldn’t be too surprising to realize that a dataflow description does not handle
synchronous logic well: this is due in large part to the lack of a process statement in a
dataflow description.

4.1 Clocked Circuits

A process statement easily handles synchronous logic, by allowing us to specify a clock
signal as one of the triggers to the circuit. Figure 20 shows a circuit that is sensitive only to
changes in the clock signal.

ARCHITECTURE cct OF testing IS
BEGIN
process (clk)
begin

end process;
END cct;

Figure 20: Code Fragment: A Clock-Sensitive Circuit

Let’s think about what a clock signal, or any waveform for that matter, looks like. There
will be a rising edge and a falling edge. Do we want our circuit to be triggered by any
change in the clock signal, or {positive,negative} edge-triggered? How do we represent edge-
triggering in VHDL?

Edge-triggering requires two conditions to be true: 1) the clock signal must change, and 2)
it must change in the positive (negative) direction, as required. Representing edge-triggering
in VHDL therefore requires a compound statement, specifying each of these conditions.

To represent the change in a clock signal, we need some way to record or recognize that
an event (corresponding to the change in clock value) has occurred. To do this, we consider
the event attribute of the clock signal, given by clk’event ©.

Unfortunately, all that the the clk’event attribute tells us is that we have encountered
an edge in the clock signal, and not whether it was a rising or falling edge. To further
specify the type of edge encountered, we also specify the value of the clock after the edge has
“completed”. Thus a value of clk="1" would indicate that a rising edge had just occurred,
and a value of clk="0’ would indicate that a falling edge had just occurred.

Figure 21 shows the clock-sensitive circuit of Figure 20 re-written to specify a negative-
edge triggered circuit.

6See the subsection on Attributes at the end of this section.

14

ARCHITECTURE cct OF testing IS
BEGIN
process (clk) begin
if (clk’event and clk=’0’) then

end if;
end process;
END cct;

Figure 21: Code Fragment: A Clocked, Negative-Edge Triggered Circuit

4.2 Reset Signals

Resets are a generally very useful thing. A reset signal in a circuit can be used to restore
initial conditions, such as resetting a counter to its initial count value. The problem with
resets is that they are generally asynchronous signals. How do we work a reset into an
synchronous circuit?

This is actually quite easy if we remember a couple of things about VHDL. The first
is that we can specify in the process sensitivity a list of all signals that affect the circuit
outputs. So, we can specify a sensitivity list that includes both the (synchronous) clock
signal and the (asynchronous) reset signal.

The second thing that we must remember that in the specification of a sequential state-
ment such as an if-then-else statement, there is an order of preference that is followed. The
first conditions that are encountered are of higher precedence, even if subsequent conditions
are also true. So, as long as the reset conditions are tested first, we should be okay.

Figure 22 shows how to incorporate an asynchronous reset signal into a synchronous
circuit. The sensitivity list tells us that the circuit outputs are sensitive to changes in the
clk signal and the reset signal. The first condition included in the if statement concerns
the reset signal; if this (asynchronous) signal is set, then the reset actions will be executed.
If the (asynchronous) reset signal is not set, and the rising edge of the clock has occurred
(note that rising edge == (clk’event and clk="1")) then the synchronous rising edge
triggered actions occur.

ARCHITECTURE cct OF testing IS
BEGIN
process (clk, reset) begin
if (reset = ’1’) then
-- do (asynch) reset actions
elsif rising_edge(clk) then
-- do (synch) rising edge clock triggered actions
end if;
end process;
END cct;

Figure 22: Code Fragment: Asynchronous Resets in Synchronous Circuits

15

Attributes

In VHDL, we often need to consider some attribute of a signal, such as recognizing when a
signal changes. When a signal changes, an event is said to have occurred; we recognize this
by looking at the event attribute of a signal "

An attribute is simply a (predefined) means of providing information about an item. An
attribute is represented with a tick-mark > and the attribute-reserved word. The attribute
that identifies that a signal has changed is given as ’event. If we wish to specify that a
given signal, for example, the clock, has changed, we can write:

clk’event

The value of clk’event is false, unless an event has just occurred (the clock has changed
value) when clk’event will be true.

"We can also consider attributes of entities, architectures, etc. In this course, we will need only consider
event attributes of signals.

16

5 Using Components

One thing that we would like to be able to do in VHDL is access components that have been
defined in separate files (same as we want to include and use functions defined in different
files when programming in C). To do this, we take advantage of the component structure
in VHDL.

Suppose that we know that the file add4.vhd contains the VHDL code for a 4-bit adder,
and we wish to use a 4-bit adder in our larger circuit. We can cut-and-paste the code from
add4.vhd into our larger circuit, or we can treat this code/file as a component that we will
use in our larger circuit.

To use your 4-bit adder, we must declare it as a component. This is how we make your
compiled adder circuit available to other VHDL files. A component declaration is not unlike
a function declaration in the C-programming language: all it does is declare the component
interface. By identifying the component input and output signals in a component declaration,
we allow a designer to determine if the interface matches the interface required /implemented
by their larger circuit.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY addfour IS

PORT (
cin : in std_logic_vector(3 downto 0);
ain,bin : in std_logic_vector(3 downto 0);
sum : out std_logic_vector(3 downto 0);
carry : inout std_logic_vector(3 downto 0);
cout : out std_logic);

END addfour;

ARCHITECTURE addfour OF addfour IS
-— Instantiated Component Declarations
COMPONENT add4

PORT (

ci : in std_logic_vector(3 downto 0);
a,b : in std_logic_vector(3 downto 0);
S : out std_logic_vector(3 downto 0);
c : inout std_logic_vector(3 downto 0);
co : out std_logic);

END COMPONENT;

—-— Internal Signal Declarations
BEGIN

-—- instantiate and connect components

add_low: add4 port map (cin, ain, bin, sum, carry, cout);
END addfour

Figure 23: Code: Instantiating A Component

17

We access this adder circuit by instantiating it within our file (to instantiate a component
is to make an instance of it, or to make a copy of it that we can use). When using instantiated
components, we must fill in the entity declaration for our larger circuit normally (there is no
indication in the entity declaration that we will be using components). The signals that we
declare in the entity declaration must contain at least the same signals (with local names)
as the signals required by the components that we are going to use!

The component declaration is bounded by the reserved words component and end
component. The component that is declared must have the same name as the VHDL file
describing that component (so component add4 would be found in file add4.vhd). The
component declaration must also exactly match the entity declaration of the component file
(in this case add4.vhd).

Note that in the entity declaration of Figure 23 we have used signal names that differ
from the names in the component declaration: this is not necessary. We could have chosen
to use the same signal names as in add4.vhd. We are using different names in this example
to illustrate how the mapping of signals from add4 to addfour is accomplished.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY sample_cct IS
PORT(
—-— bunch of signals declared here
END sample_cct;
ARCHITECTURE sample_cct OF sample_cct IS
—-- Component Instantiations
COMPONENT componentl
PORT(
—-—- componentl’s entity declaration
END COMPONENT;
COMPONENT component?2
PORT(
—-—- component2’s entity declaration
END COMPONENT:
COMPONENT componentN
PORT(
-- componentN’s entity declaration
END COMPONENT;

—-— Internal Signal Declarations
BEGIN

-- instantiate and connect components
END sample_cct;

Figure 24: Code: Instantiating Multiple Components

The actual instantiation of the adder component occurs in the architecture body (see

18

Figure 23), where we declare a local copy (add_-low) of the component add4. We can
declare multiple local copies of add4, as long as each has a distinct local name.

The local declaration of add_low also maps the local signals (defined in our entity declara-
tion) to the corresponding component signals of add4, defined in the component declaration.
The port map clause identifies how the signals of your desired circuit are to be intercon-
nected to the input and output signals of the library black box component. In this case, the
signals identified in the port map clause are mapped, in the order given, to the signals in
the component declaration, again in the order given. So, in Figure 23, the local signal ain
maps to the component signal a, sum maps to the component signal s, and so on.

You may instantiate multiple components in a VHDL file, as shown in Figure 24.

19

6 Making Your Own Library

In this section, we will walk through how to create your own library. We will use a sample
4-bit adder circuit as our “working” example component, and add this file to a library file
mylibrary so that you can access this component from other VHDL files.

6.1 Component Declaration

If a circuit is to be made available to other files, it must be declared as a component, as
described in the previous section. A generic component declaration is given as:

component component_name port (
define component interface (cut and paste from entity declaration)
end component;

The difference between a component that is declared inside the file in which it will be
used, and one that is declared in a library, is that the library components must be declared
within a package.

6.2 Package Declaration

If we think about the types of components that we may wish to include in a library, we may
have multiple types of similar components. For example, we may wish to be able to include
4-bit, 8-bit, 12-bit and 16-bit adder components.

We use packages to group together components with the same functionality but different
parameters. Each component within a package will have its own component declaration (so
there would be a component declaration for the 4-bit adder, 8-bit adder, and so on). This
makes sense: remember that a component declaration defines the component’s interface. A
4-bit adder will have a different interface than an 8-bit adder (because the width of the input
and output signals differ) and will therefore require a different component declaration.

For now, we will declare a package with a single component (simply because we have only
defined the single 4-bit adder component)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
package package_name is
component component_name port (
define component interface (cut and paste from entity declaration)
end component;
end package_name;

Note that we have included the ieee library as part of our package declaration. Any

libraries required by the package components must be identified before the package is declared
8

8This will have profound implications when you attempt to include multiple packages in a user-defined
library. You must re-declare any and all libraries that are required by the package components before each
package declaration. If you fail to do this, you will experience some wild and wonderful error messages.

20

6.3 Libraries

You have already used built-in libraries supplied by Max+Plusll when you invoked the
boolean gates in the ieee library. Now we are going to create our own libraries, containing
packages and components that we have compiled (and successfully simulated).

A library is a VHDL file that contains the package and component declarations that we
will be accessing from another VHDL files. A library must be compiled, just as a regular
VHDL file must be compiled. What makes a library different, however, is that it does not
contain the component’s architecture body. That is, all we need to include in the library is
the component declarations (which look surprisingly like the component’s entity declaration).
Max-+Plusll will look for the entity that matches the component name by looking for the
VHDL file with the same name (remember that VHDL file names and entity names must
match). This highlights one difference between a library file and a “regular” VHDL file: a
library file may contain many components (entities) and therefore cannot match an entity
name.

6.4 Building Your Library

Your library will contain (for now) an adder package, with the 4-bit adder component of the
previous sections. Open a new file in the text editor and add the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
package adder_pkg is
component add4 port (
signals cut and paste from your entity declaration
end component;
end adder_pkg;

Save this file as mylibrary.vhd. Set the project name to the current file (Cntrl-Shift-J) and
then save and compile your library (Cntrl-L). You should get the following message:

Info: Compiling package "ADDER_PKG"
Info: File ‘‘...\mylibrary.vhd" does not contain an Architecture Body
- stopping compilation

This is okay. However, there is an important thing to note with this: any changes that
you now make to your add4.vhd file, in particular the entity declaration, must be also made
in your library file, and both files must be re-compiled.

Believe it or not, you have now created a library file. If you want to use it, you must
declare it in the library statement of your VHDL file, and you must identify which packages
in the library you wish to use (for now, and probably for always, you will use all packages).

6.5 Instantiating a Library Component in a VHDL File

The other big difference between user-defined libraries and the built-in VHDL/Max+PlusII
libraries is in how you access the components. Before we look at a hierarchical interconnection
of library components, let’s look at how to instantiate a library component.

21

Figure 25 shows how to instantiate the add4 component from your file mylibrary
into a new file, addfour.vhd. Remember that the add4 component is defined in the file
add4.vhd.

—-— examples using libraries and packages
LIBRARY ieee, mylibrary;
USE ieee.std_logic_1164.all;

USE mylibrary.adder_pkg.all; -— your library file
ENTITY addfour IS
PORT(

cin ;== fill in yourself;

ain,bin :—— fill in yourself;

sum :—— fill in yourself;

carry :—— fill in yourself;

cout :—— fill in yourself);

END addfour;

ARCHITECTURE addfour OF addfour IS

BEGIN

-—- instantiate and connect components

adder: add4 port map (cin, ain, bin, sum, carry, cout);
END addfour;

Figure 25: Code: User-Defined Libraries and Components

The first thing to note about the code in Figure 25 is that there are two libraries declared,
the ieee library and your library, mylibrary. The next thing to notice is that that the usage
of the adder_pkg in mylibrary is declared in the USE statement.

The entity declaration of your component is a “normal” entity declaration. In this entity
declaration, the signals used by the component that you are building are declared; these
signals are “local” to this file.

To instantiate the add4 library component, we first give it a “local” name, in this case,
adder. This creates a distinct copy of the library component add4 in our local file.

We must then map the signals from the local component adder to the library component
add4. Because we are treating the library component as a black box, we are only concerned
with the interface signals, or the input and output ports of the library component. The
port map defines the mapping of local signals onto the library component port signals.
The listing of local signals shown in Figure 25 must be in the same order that the signals
are declared in the library component’s entity declaration. Why?

Having done all this, we have now successfully instantiated the library component add4
in the library package mylibrary.adder_pkg and mapped the signals from our local com-
ponent to the equivalent signals in the library component.

22

6.6 Compiling Your Library into a VHDL File

The only thing left to do is to figure out how to actually access your library as a library
from within another VHDL file. First, you must declare your library using the LIBRARY
clause (see below). Then you must identify which packages you wish to access (in this case,

the

adder_pkg), and which components within that package you wish to access (will almost

always be all).

-- examples using libraries and packages
LIBRARY ieee, mylibrary;

USE ieee.std_logic_1164.all;

USE mylibrary.adder_pkg.all;

Before you compile your VHDL file, you must tell the compiler about the location of your
mylibrary file:

1.

ook W

Save your VHDL file, and bring up the Compiler menu (pull down from the Max+PlusII
menu).

Pull down the Interfaces menu
Open the Netlist Reader Settings menu
Fill in the library name in the library box

Fill in the directory name containing the library, either by typing it in or highlight and
double-click on the correct directory in the directory structure window.

Click Add to add your library to the existing (user-defined) libraries.
Click OK. You're done.

23

7

10.

11.
12.

Using Max+PluslI for VHDL

. Start up Max+PlusII. Create a new project (File / Project)
. Start up the Max+PluslI text editor (Max+PlusIl / Text Editor)
. Insert the VHDL templates for Entity Declaration and Architecture Body (Tem-

plates / VHDL Templates)

. Save the file with the .vhd extension (File / Save As). Explicitly enter filename.vhd

Do not let the automatic extension of .tdf be used as this will tell Max-+PlusIl that
you are entering an AHDL file, which you are not doing.

. Fill in the blanks in the templates. Recall that __variable is not a legitimate variable

name in VHDL, and so you must replace everything that is given in the template as
_variable with a legitimate variable name. Re-save your file frequently.

. Once you have entered your complete VHDL specification, you are ready to compile the

code. Select the compiler (Max+PlusIl / Compiler). Select the VHDL NetList reader
sebfings (Interfaces / VHDL NetList). Set for 1993 VHDL. At this point, you can also
define any user-defined libraries and packages.

Double check that your VHDL file has a .vhd extension and not a .tdf extension. The
next step will fail miserably if you do not have the .vhd extension.

. Start the compiler. Fix any errors and re-compile. Once you compile without errors,

go to the next step. (Make sure that your entity name is the same as your filename.)

. Go back to the compiler (Max+PluslI / Compiler). Select the Functional SNF Extractor

(Processing / Functional SNF Extractor) and start.

Open SCF and set up the inputs for the waveform (see the Max+PluslI tutorial). Save
the SCF file.

Go to the simulator (Max+PluslIl / Simulator) and start simulating.

Verify the simulated waveform.

24

8 VHDL Syntax Primer

8.1 Reserved Words

The following list of reserved words is by no means complete, but contains most (if not all)
of the reserved words that are of interest in ELE548.

alias all and architecture begin
body case component constant downto
else elsif entity exit for

if in inout is library
loop map nand nor not
null of on or others
out package port process signal
then to ttype until use
variable wait when while with
Xnor Xor

The boolean functions and, nand, not, or, xnor, xor are found in the ieee library, in
the std_logic_1164 package.

8.2 Declarations
8.2.1 Entity Declaration

entity entity_name is
port (
interface_signal_declarations
);

end entity_name;

8.2.2 Architecture Body

architecture arch_name of entity_name is
declarations:
signal_declarations, constant_declarations
component_declarations, alias_declarations
begin
architecture_body
end [architecture] arch_name;

The architecture_body may or may not include processes.

25

8.2.3 Library Declarations
library list_of_library _names;
To use a library, we must declare a use statement as follows:
use library_name.package_name.item;

.item will usually be .all in this course.

8.2.4 Package Declarations

To create a user-defined library, we need to declare the packages contained in the library.
This is done as follows:

package package_name is
package_declarations
end package [pacakge name];

Packages in turn contain components, defined in the next section.

8.2.5 Component Declarations

component component_name
port (
signal interface_signals : mode signal_type;
);

end compnent [component_name;

Components can be declared within an architecture, or within a library. When declared
within a library, components must be contained within packages (see above).
Components are instantiated as follows:

internal_component_label: component_name
port map (list_of_local signals);

8.2.6 Signal Declarations

signal list_of_signal names : type_name [:= initial_value];

interface_signal_declarations look like

signal list_of_signal names: mode signal_type;

8.2.7 Constant Declarations

constant constant_name : type_name := constant_value;

26

8.2.8 Alias Declarations

alias identifier is item_name;

8.2.9 Variable Declarations

variable var_name : type_name [:= initial value];

8.2.10 Integer Type Declarations

int_type type_name is range integer_range;

8.3 Simple Assignment Statements
8.3.1 Signal Assignment
signal <= expression
Concurrent statements are recalculated every time the erpression on the right-hand side of
the equation changes.
8.3.2 Variable Assignment

variable := expression
Variables can only be declared within a process (for our purposes) and are local to the process

in which they are declared. Variables are updated immediately.

8.4 Concurrent Statements
8.4.1 when-else

signal <= expressionl when conditionl else
expressionl when condition2 else

[expressionN];

8.4.2 with-select-when

with selection_expresssion select
signal <= expressionl when conditionl;
expressionl when condition2;

[expressionN when others];

27

8.5 Sequential Statements
8.5.1 Process Declaration

[process-label:] process (sensitivity list)

[local constant/variable/alias declarations]
begin

sequential statements:

signal_assignment, variable_assignment,

if_statements, case_statements, loop_statements
end process [process-labell;

Process labels are used to identify the functionality of the process; a process label is not
mandatory but is strongly recommended.

8.5.2 if-then-else

if condition then
sequential_statements
{elsif condition then
sequential _statements }
lelse sequential statements]
endif;

8.5.3 case-when

case expression is
when choicel => sequential_statements
when choice2 => sequential _statements

| when others => sequential_statements]
end case;

8.5.4 for-loop

for identifier in range loop
sequential_statements
end loop

8.5.5 while-loop

while boolean_condition loop
sequential_statements
end loop

28

8.5.6 Synchronous Logic with Asynchronous Reset

[process-label:] process (reset, clock)
[local constant/variable/alias declarations]
begin
if reset = '1’ then
asynchronous_reset_assignment_statements
elsif clock’event and clock = 0’ then
synchronous_assignment_statements
end process [process-labell;

8.6 Modes

8.6.1 in

Used to describe a signal that is an input to an entity. Such signals can ONLY be used as
inputs.

8.6.2 out

Used to describe signals that may ONLY be used as outputs from an entity. out signals are
not required internally within an entity.

8.6.3 inout

Used to describe signals that may be used as inputs and outputs to an entity. Useful when
hierarchically creating components or dealing with bi-directional signals (such as feedback
signals).

8.6.4 Dbuffer

A buffer signal is an output signal, where the signal’s values are also required internal to an
entity.
This mode is not required in ELE548.

29

9 Exercise: A 4-bit Adder

Objective As the first part of this tutorial, you are going to implement a simple combi-
national circuit, in the form of a 4-bit carry-propagate adder, one bit of which is shown in
Figure 26. You will implement this circuit using the Max+Plusll graphical editor and you
will code this adder in VHDL. You will then simulate both in Max+Plusll and verify your
implementations using a waveform analysis.

Aj

B) O —) S
=
—‘ ﬁ) > Ci+1

Figure 26: 1-Bit Carry-Propagate Adder

The inputs to the adder will be two 4-bit vectors and a carry-in bit. Assume that the
initial carry-in bit will always be ’0’ (there is no carry-in). The output of the adder will be
a single 4-bit vector and a carry-out bit.

9.1 A Schematic-Entry 4-Bit Adder

Design Requirements

Implement, using the graphical editor and the built-in Max+Plusll symbols, a schematic
design for the 4-bit adder circuit based on the single-bit shown in Figure 26. Compile and
simulate this design to be sure that it works :)

To Be Handed In: A schematic design of this circuit, built using the Max+PluslI Graphic
Editor (see “A Quick Introduction to Altera Max+PlusII” handout) and a simple waveform
analysis that demonstrates that your circuit is correct.

Hint: You can make this a lot easier on yourself by setting one input to a set of count values
and setting the second input to a group value. If you cleverly chose the starting and group
values, you can watch the carry-out bit being set in a relatively small time frame.

9.2 A VHDL 4-Bit Adder

Design Requirements

You are to design, implement, and simulate in VHDL, the 4-bit adder described above. You
are to implement this adder from first principles (you must build the 4-bit equivalent circuit
of Figure 26) with “basic” level components only: and’s, or’s, nor’s, nand’s, and not’s
are allowed. You may employ either behavioural or dataflow descriptions.

30

Implementing the VHDL Code
The entity declaration of the 4-bit adder is:

LIBRARY ieece;
USE ieee.std_logic_1164.all;
ENTITY add4 is

PORT(
ci : IN STD_LOGIC;
a,b : IN STD_LOGIC_VECTOR(3 downto 0);
] : OUT STD_LOGIC_VECTOR(3 downto 0);
c : INOUT STD_LOGIC_VECTOR(3 downto 0);
co : OUT STD_LOGIC);
END add4;
ARCHITECTURE add4 OF add4 IS
signal p,g : std_logic_vector(3 downto 0);
BEGIN
process(7)
begin

-- you fill in what goes here
end process;
END;

To Be Handed In: A VHDL-source-code listing of your 4-bit adder. A printout from
Max+PlusllI is acceptable. You must also answer the following questions:

1. Why is signal ¢ declared as INQUT?

2. Why are signals p and g declared in the architecture body and not the entity declaration?

Simulation

In Max+Plusll, compile and simulate your code. Verify that your adder is correct using
Waveform simulation.

To Be Handed In: A waveform listing of your 4-bit adder as generated by Max+PluslI.
On your waveform listing, show that the adder is correctly implemented. Remember the
hint from the previous exercise.

31

10 Exercise: A 16-bit Adder

To illustrate one way that hierarchical design actually works, we are now going to build a 16-
bit adder, from “scratch” and by interconnecting four of the 4-bit adders from the previous
section.

10.1 Brute Force Schematic Entry 16-bit Adder

Design Requirements

Go back to the schematic design you generated of the 4-bit adder. Generate the equivalent
schematic diagram of the 16-bit adder (meditate on the joys of cut and paste) and simulate
your circuit.

To Be Handed In: The schematic diagram illustrating your complete 16-bit (brute force)
adder and the corresponding waveform analysis proving that it is correct.

10.2 Brute Force VHDL 16-bit Adder

Design Requirements

Design the circuit 16-bit version of the circuit shown in Figure 26. This circuit is to be
implemented with “basic” level components only: and’s, or’s, nor’s, nand’s and not’s
are allowed. Meditate once again on the joys of cut-and-paste.

Implementing the VHDL Code

Implement the corresponding the VHDL code for the design of the previous section. You
may employ either behavioural or dataflow descriptions.
The entity declaration of the 16-bit adder is:

LIBRARY ieece;
USE ieee.std_logic_1164.all;
ENTITY add4 is

PORT(

ci : IN STD_LOGIC;
a,b : IN STD_LOGIC_VECTOR(15 downto 0);
s : OUT STD_LOGIC_VECTOR(15 downto 0);
C : INOUT STD_LOGIC_VECTOR(15 downto 0);
co : 0UT STD_LOGIC) ;

END add4;

ARCHITECTURE add16 OF addi16 IS

BEGIN

-- you fill in what goes here
END;

To Be Handed In: A VHDL-source-code listing of your 16-bit adder. A printout from
Max+PluslI is acceptable.

32

Simulation

In Max+Plusll, compile and simulate your code. Verify that your adder is correct using
Waveform simulation.

To Be Handed In: A waveform listing of your 16-bit adder as generated by Max+PluslI.
On your waveform listing, show that the adder is correctly implemented.

10.3 16-bit Adder Using Components

Neither the brute force schematic nor cut and paste implementations of a large circuit work
well if we already have “parts” of that circuit. Instead, hierarchical components, based on
existing components, is a much better approach. You have already used this approach with
Max+PlusII provided components, when you used the library symbols (for the schematic
entry designs) and the boolean operations (such as and in the VHDL entry designs).

In this exercise, you will instantiate, as a component, the 4-bit adder of previous exercises,
and the interconnect the instantiated components to create a 16-bit adder.

Design Requirements

On paper, represent the 4-bit adder of the previous sections as a black box. Identify the
inputs and outputs to this box. Show how to use this black box component to implement
a 16-bit adder (draw the required number of black box components and interconnect them,
showing which outputs of which box are used as inputs to which other box). Be careful with
the identification of the interconnects, and make sure that they are clearly labelled: this will
be very useful for the implementation section...

Implementing the VHDL Code

You must declare the 4-bit adder component and any required interconnect signals. You must
then instantiate the 4-bit adder some number of times, and interconnect these instantiated
components to create a 16-bit adder.

To Be Handed In: A VHDL-source-code listing of your 16-bit adder and your component
file(s). A printout from Max+PluslI is acceptable.

Simulating the Circuit

In Max+Plusll, compile and simulate your code. Verify that your adder is correct.
To Be Handed In: A waveform listing of your 16-bit adder as generated by MaxplusII.
On your waveform listing, show that the adder is correctly implemented.

10.4 16-bit Adder Using User-Defined Library Components

In this exercise, you will put the 4-bit adder of the previous exercises into a package, compile
it into a library and then hierarchically create a 16-bit adder.

33

Design Requirements

Same as for previous exercise.

Implementing the VHDL Code

You must declare the 4-bit adder as a component, within a package, and compile the
package declaration into a library. See the “Making a Library” and “Using Components”
sections of this tutorial for more details.

To Be Handed In: A VHDL-source-code listing of your 16-bit adder and your library file.
A printout from Max+PluslI is acceptable.

HINT: Be careful about the exact implementation of the 4-bit adder that you chose to in-
clude in your library and use in this design. Now that your are hierarchically interconnecting
components, an output from one component may also have to role of an input to another
component. This will affect how you define your component /entity signals!

Simulating the Circuit

In Max+Plusll, compile and simulate your code. Verify that your adder is correct.
To Be Handed In: A waveform listing of your 16-bit adder as generated by MaxplusII.
On your waveform listing, show that the adder is correctly implemented.

34

11 Exercise: D Flip-Flops

11.1 A VHDL Single-Bit D Flip Flop with Asynchronous Reset

Design Requirements

You are to design, implement, and simulate in VHDL a positive-edge-triggered D flip flop
with an asynchronous reset. You may use either behavioural or dataflow descriptions (hint:
one of these will be much more elegant than the other).

Implementing the VHDL Code
The entity declaration of the D-FF is:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dfflopl IS
PORT (
-— you fill in the blanks!
END dfflopi;

ARCHITECTURE dfflop_1bit OF dfflopl IS
BEGIN

-- you fill in the blanks!
END dfflop_1bit;

To Be Handed In: A VHDL source-code listing of your single-bit D flip flop.

Simulation

Using Max+plusll, compile and simulate your code. Verify that you adder is correct using
Waveform simulation.

To Be Handed In: A waveform simulation of your single-bit D flip flop. Show that your
DFF is correctly implemented.

11.2 A VHDL 4-bit D Flip Flop with Asynchronous Reset

In this exercise, we will extend the single bit D flip flop of the previous exercise to implement
a positive-edge-triggered D flip flop capable of handing an 4-bit input vector (and therefore
an 4-bit output vector). Question: Does this implement a 4-bit latch or a 4-bit register?

Design Requirements

You are to design, implement, and simulate in VHDL a positive-edge-triggered 4-bit D flip
flop with an asynchronous reset. You may use either behavioural or dataflow descriptions.

35

Implementing the VHDL Code
The entity declaration of the 4-bit D-FF is:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY dfflop4 IS
PORT(
-- you fill in the blanks!
END dfflop4;

ARCHITECTURE dfflop_4bit OF dfflop4 IS
BEGIN

-- you fill in the blanks!
END dfflop_4bit;

To Be Handed In: A VHDL source-code listing of your 4-bit D flip flop.

Simulation

Using Max+plusIl, compile and simulate your code. Verify that you adder is correct using
Waveform simulation.

To Be Handed In: A waveform simulation of your 4-bit D flip flop. Show that your circuit
is correctly implemented.

36

12 Exercise: Multiplexors

12.1 A VHDL 2-bit Multiplexor

In the “Introduction to Max+plusII” tutorial, you used schematic entry (via the graphical
editor) to implement a single-bit multiplexor. In this exercise, you are to implement, in
VHDL (via the text editor) a 2-bit multiplexor. The inputs to this multiplexor are the
selection signal, s, and two 4-bit vectors, a and b. Depending on the value of the selection
signal, the output vector x will contain either the logical and, or logical or of vectors a and
b, or the logical inverse of vectors a or b, as shown in the table below:

‘ Select Signal ‘ Operation Performed ‘

00 x<+aandb
01 X < not(a)
10 X< aorb
11 X < not(b)

Design Requirements

You are to design, implement, and simulate in VHDL a 2-bit multiplexor. You may use
either behavioural or dataflow descriptions.

Implementing the VHDL Code

The entity declaration of the 2-bit multiplexor is:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY mux IS
PORT(
-— you fill in the blanks!
END mux;

ARCHITECTURE mux2 OF mux IS
BEGIN

-— you fill in the blanks!
END mux;

To Be Handed In: A VHDL source-code listing of your 2-bit multiplexor.

Simulation

Using Max+plusll, compile and simulate your code. Verify that you multiplexor is correct
using Waveform simulation.

To Be Handed In: A waveform simulation of your 2-bit multiplexor. Show that your mux
is correctly implemented.

37

13 Exercise: Using Components

13.1 An Adder-D Flip-Flop Circuit

In this exercise we are going to use components to build a cicuit from the 4-bit adder and
4-bit positive-edge-triggered flip flop circuits of the previous exercises. The composite circuit
will take two 4-bit input vectors, add them together, and then feed the output into a positive-
edge-triggered 4-bit D flip flop. The flip flop will have an asynchronous reset, which will reset
the output of the flip flop to zero.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY addDff IS

PORT(
cin :—— fill in yourself;
ain,bin :—— fill in yourself;
q :—— fill in yourself);
END addDff;

ARCHITECTURE arch_addDff OF addDff IS
-- Instantiated Component Declarations
COMPONENT add4
PORT(
-- fill in to match your component’s entity declaration
END COMPONENT;
COMPONENT dfflop4
PORT(
-- fill in to match your component’s entity declaration
END COMPONENT;
-- Internal Signal Declarations
-- include any internal signals required
BEGIN
-—- instantiate and connect components

END arch_addDff;

Figure 27: Code: Composite Adder-D Flip Flop Circuit

Design Requirements

You are to design, implement and simulate in VHDL this composite adder-D flip flop circuit.
You may use either behavioural or dataflow descriptions.
To Be Handed In: A VHDL soruce-code listing of your composite circuit.

38

Implementing the VHDL Code

The template for the code for this composite circuit is shown in Figure 27.

Simulation

Using Max+plusll, compile and simulate your code. Verify that your composite circuit works

as intended using Waveform simulation.

To Be Handed In: A waveform simulation of your circuit. Show that the circuit is correctly

implemented.

13.2 Adder-D Flip Flop Circuit Using Library Components

In the previous exercise we declared and instantiated components within our circuit. In this
exercise, we will create a library file with the required component instantiations and then

use the library file to reference the adder and D flip flop components.

Design Requirements

Implement an adder package and a D flip flop package with the corresponding components.

Compile this file as a library file.

LIBRARY ieee, mylibrary;
USE ieee.std_logic_1164.all;
USE

-- identify adder package

USE —-— identify flip flop package
ENTITY addDff IS
PORT(
cin ;== fill in yourself;
ain,bin :—— fill in yourself;
q :—— fill in yourself);
END addDff;

ARCHITECTURE arch_addDff OF addDff IS
-- Internal Signal Declarations
-- include any internal signals required

BEGIN

-- instantiate and connect components

END arch_addDff;

Figure 28: Code: Adder-D Flip Flop Circuit Using Library Components

39

Implementing the VHDL Code

The template of this VHDL code for this question is given in Figure 28.
To Be Handed In: A VHDL-source-code listing of your composite circuit and your library
file.

Simulation

Using Max+plusll, compile and simulate your code. Verify that your composite circuit is
correct using Waveform simulation.

To Be Handed In: A waveform simulation of your composite circuit. Show that the circuit
is correctly implemented.

40

References

[1] Kevin Skahill. VHDL for Programming Logic. Addison-Wesley, 1996.
[2] Jr Charles H. Roth. Digital Systems Design Using VHDL. ITP Nelson, 1997.

41

